
bana Documentation
Release 0.1.0

Christopher Crouzet

Sep 27, 2017

Contents

1 User’s Guide 3
1.1 Overview . 3
1.2 Installation . 4
1.3 Tutorial . 5
1.4 Pattern Matching . 5
1.5 Retrieving Nodes . 11
1.6 Extension Categories . 12
1.7 API Reference . 13

2 Developer’s Guide 35
2.1 Running the Tests . 35

3 Additional Information 37
3.1 Changelog . 37
3.2 Versioning . 38
3.3 License . 38

Python Module Index 39

i

ii

bana Documentation, Release 0.1.0

Welcome! If you are just getting started, a recommended first read is the Overview as it shortly covers the why, what,
and how‘s of this library. From there, the Installation then the Tutorial sections should get you up to speed with the
basics required to use it.

Looking how to use a specific function, class, or method? The whole public interface is described in the API Reference
section.

Please report bugs and suggestions on GitHub.

Contents 1

https://github.com/christophercrouzet/bana

bana Documentation, Release 0.1.0

2 Contents

CHAPTER 1

User’s Guide

Overview

The Maya’s Python API is often a good choice over the commands layer whenever performances and robustness are
valued. But because of its overall poor design, it is not uncommon that some fundamental functionalities are lacking
out of the box and/or require too much boilerplate to get rolling.

Other gotchas to be expected include methods that became too daunting to use after porting in the worst possible way
the API from C++ to Python, undocumented behaviours of certain features where error trialing is everything that is
left, and methods throwing an exception when returning None would have been more appropriate.

Bana aims at reducing these shortcomings to provide a more friendly, predictable, and efficient developing environ-
ment.

Using the monkey patching package gorilla, new methods prefixed with bn are inserted within some classes from
the maya.OpenMaya* modules, thus extending their functionalities while making these new methods feel as if they
were built-in into Maya.

Since performances are a primary reason for using the API, a set of benchmarks built with the help of the package
revl helps to ensure that these extensions remain as fast as possible.

Note: Bana extends on Maya’s Python API 1.0 rather than 2.0 because the latter version seems to be still incomplete.
That being said, it is encouraged to use the API 2.0 whenever possible since it provides a much more Pythonic interface
with increased performances.

Note: Bana does not aim at making the API more Pythonic. This could in some cases impact the performances,
which goes against Bana’s goal of keeping things fast.

3

https://github.com/christophercrouzet/gorilla
https://github.com/christophercrouzet/revl

bana Documentation, Release 0.1.0

Features

• easy retrieval of nodes from the scene.

• robust and predictable specification for pattern matching with wildcards.

• abstract away the usage of the maya.OpenMaya.MScriptUtil class.

• performances as a top priority.

Usage

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> # Retrieve a transform node named 'root'.
>>> root = OpenMaya.MFnTransform.bnGet(pattern='*|root')
>>> # Recursively iterate over all the DAG nodes child of 'root'.
>>> for node in root.bnFindChildren():
... print(node)
>>> # Find all the mesh nodes in the scene containing the word 'Shape' but
... # not belonging to any namespace.
>>> for node in OpenMaya.MFnMesh.bnFind(pattern='*|*Shape*'):
... print(node)

See also:

The Tutorial section for more detailed examples and explanations on how to use Bana.

Installation

Bana requires to be run from within an Autodesk Maya‘s Python environment. This is usually done either by running
the code from within an interactive session of Maya, or through using the mayapy shell. A Python interpreter is
already distributed with Maya so there is no need to install one.

Additionally, Bana depends on the gorilla package.

Note: Package dependencies are automatically being taken care off when using pip.

Installing pip

The recommended1 approach for installing a Python package such as Bana is to use pip, a package manager for
projects written in Python. If pip is not already installed on your system, you can do so by following these steps:

1. Download get-pip.py.

2. Run python get-pip.py in a shell.

Note: The installation commands described in this page might require sudo privileges to run successfully.

1 See the Python Packaging User Guide

4 Chapter 1. User’s Guide

http://www.autodesk.com/products/maya
https://github.com/christophercrouzet/gorilla
https://pip.pypa.io
https://raw.github.com/pypa/pip/master/contrib/get-pip.py
https://packaging.python.org/current/

bana Documentation, Release 0.1.0

System-Wide Installation

Installing globally the most recent version of Bana can be done with pip:

$ pip install bana

Or using easy_install (provided with setuptools):

$ easy_install bana

Development Version

To stay cutting edge with the latest development progresses, it is possible to directly retrieve the source from the
repository with the help of Git:

$ git clone https://github.com/christophercrouzet/bana.git
$ cd bana
$ pip install --editable .[dev]

Note: The [dev] part installs additional dependencies required to assist development on Bana.

Tutorial

One cool thing with these extensions is that there isn’t much to know to get rolling—you’ll be using the same old
Maya’s Python API as you’ve always done, only with a few extra methods at your disposal that have been injected
here and there.

All there is to make these extensions available as part of Maya’s API is to initialize them:

>>> import bana
>>> bana.initialize()

Done! Now you can head over to the API Reference section and make use of any of the extensions listed in there.

Note: Feel free to check out the Pattern Matching and Retrieving Nodes sections for guides about some core features
included with Bana.

Pattern Matching

The API of Maya has a well-defined syntax to describe DG names and DAG paths but the solution
offered to match wildcard patterns, through the use of methods such as maya.OpenMaya.MGlobal.
getSelectionListByName(), can sometimes lead to unexpected results.

As an example, Maya defines the pattern |* as matching only the DAG nodes of depth 1, that is the nodes di-
rectly parented under the world. Therefore, when using a similar pattern applied to the underworld, for instance
node|shape->|*, one would intuitively expect that only the nodes located directly beneath the underworld are to

1.3. Tutorial 5

https://setuptools.readthedocs.io/en/latest/easy_install.html
https://github.com/pypa/setuptools
https://git-scm.com

bana Documentation, Release 0.1.0

be matched. Instead, Maya’s implementation leads to match all the nodes at any depth below the underworld, which
is inconsistent.

To alleviate this lack of predictability and to add a whole new set of possibilities loosely borrowed from Python’s re
module, a new specification dedicated to matching name and path patterns is being used across the Bana extensions,
mostly through the bnFind*() and bnGet*() methods (see Retrieving Nodes).

This pattern matching specification introduces:

• a new syntax built upon Maya’s DG names and DAG paths syntaxes, with support for four wildcard operators
*, +, ?, and ..

• a well-defined set of matching rules describing the expected behaviour when using these wildcards in each
possible scenario.

Syntax

The standard syntax defined by Maya, and recognized by Bana, describes DG names and DAG paths as they
are expected to be returned by methods like maya.OpenMaya.MFnDependencyNode.name() and maya.
OpenMaya.MFnDagNode.fullPathName():

alpha ::= ``a''...''z'' | ``A''...''Z'' | ``_''
character ::= alpha | ``0''...''9''
name ::= alpha character*
full_name ::= (name '':'')* name
path ::= (``|'' full_name)+
full_path ::= path (``->'' path)* ``->''?

The library Bana extends the standard syntax by adding support for the four wildcard operators:

wcard ::= ``*'' | ``+'' | ''?'' | ''.''
wcard_name ::= (alpha | wcard+) (character | wcard+)*
wcard_full_name ::= ('':'' wcard+ | wcard_name) ('':'' wcard_name)*
wcard_path ::= (``|'' wcard_full_name | wcard+)+
wcard_full_path ::= wcard_path (``->'' wcard_path)* ``->''?

Note: The syntax groups are listed in ascending precedence order. In other words: character < name < full name <
path < full path. This is useful for determining the context.

In English

Names can identify DG nodes, excluding the ones carrying any namespace or hierarchy information. They are made
of character elements, that is alphanumeric characters, underscores, and wildcards.

Full names can fully identify any DG node. They are composed by one or more name elements, each separated
by the namespace delimiter :.

Paths can identify DAG nodes, excluding the ones carrying any underworld information. They are composed by one
or more full name elements, each starting with the hierarchy delimiter |.

Full paths can fully identify any DAG node. They are composed by one or more path elements, each separated
by the underworld delimiter ->.

6 Chapter 1. User’s Guide

https://docs.python.org/library/re.html

bana Documentation, Release 0.1.0

Patterns can be checked against any of these syntax groups using the corresponding bana.OpenMaya.MGlobal.
bnIsValid*() method:

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> OpenMaya.MGlobal.bnIsValidName('node')
True
>>> OpenMaya.MGlobal.bnIsValidName('node_*', allowWildcards=True)
True
>>> OpenMaya.MGlobal.bnIsValidName('ns:node')
False
>>> OpenMaya.MGlobal.bnIsValidFullName('ns:node')
True
>>> OpenMaya.MGlobal.bnIsValidFullName('*:node', allowWildcards=True)
True
>>> OpenMaya.MGlobal.bnIsValidFullName('|node')
False
>>> OpenMaya.MGlobal.bnIsValidPath('|node')
True
>>> OpenMaya.MGlobal.bnIsValidPath('*|node', allowWildcards=True)
True
>>> OpenMaya.MGlobal.bnIsValidPath('|root->|node')
False
>>> OpenMaya.MGlobal.bnIsValidFullPath('|root->|node')
True
>>> OpenMaya.MGlobal.bnIsValidFullPath('*->|node', allowWildcards=True)
True

TL;DR

The composition of names, full names, paths, and full paths, can approximately be summed up as follows:

• a name is composed of one or more character elements.

• a full name is composed of one or more name elements separated by the : symbol.

• a path is composed of one or more full name elements separated by the | symbol.

• a full path is composed of one or more path elements separated by the -> symbol.

Matching Rules

Depending on where a wildcard operator is located within a pattern, it might end up matching a certain number of
occurrences of either one of the character, name, full name, or path syntax groups. For example the wildcard
in the pattern |node_* matches a name formed by any number of characters, but the same wildcard in the pattern
*|node matches a path composed by any number of full names (e.g.: |root|parent|node).

In order to understand what a wildcard, or a combination of wildcards, will precisely match, there are two aspects to
take into consideration:

• the context in which the wildcards are defined.

• the number of occurrences that the wildcards describe.

1.4. Pattern Matching 7

bana Documentation, Release 0.1.0

Context

The context represents the syntax group to be matched. It can be determined by looking at the delimiters surrounding
the wildcards, picking the one with the highest precedence, and retrieving the syntax group associated with it as defined
in this table sorted in descending precedence order:

delimiter syntax group

character name

: full name

| path

-> full path

For example, the wildcard in the pattern |ns:*|leaf is surrounded by the delimiters : and |, respectively rep-
resenting the full name and path syntax groups, hence the context is full name since it has a higher precedence than
path.

When the wildcards are located at the beginning or the end of a string, then the only delimiter found is used to define
the context. For example, the context for the wildcard in the pattern *->|leaf is full path, as per the -> delimiter.

If one of the delimiters is a character, then the context is bound to be name. The pattern |node*->leaf is an
example of such a case.

Finally, if a pattern is only composed of wildcards, then the global context defined by the matching method called is
used. For example the method MGlobal.bnMatchFullPath() defines the global context full path.

Number of Occurrences

Remember how, according to the rules of syntax composition, a syntax group might be made of one or more elements
of another syntax group. With this in mind, the number of occurences specifies how many elements of a context needs
to be matched.

The special characters *, +, ?, and . all carry the same purpose of matching a context element but a different number of
times. The quantity being described by these wildcards is the same as their regular expression language counterparts,
meaning that:

• * matches 0 or more occurrences of a context element.

• + matches 1 or more occurrences of a context element.

• ? matches 0 or 1 occurrences of a context element.

• . matches 1 occurrence of a context element.

As an example, if the context is full name, then the quantifier defines how many name elements needs to be
matched: the wildcard in the pattern |ns:+|leaf will match 1 or more names separated by the : delimiter, thus
forming in the end a full name.

Matching Nothing

It sometimes makes sense to allow a wildcard to match zero occurrences. This is especially useful when performing
recursive searches where the pattern *|leaf can match any node named leaf, including the one directly par-

8 Chapter 1. User’s Guide

bana Documentation, Release 0.1.0

ented under the world, and where the pattern |ns:*:leaf can match nodes such as |ns:ns2:ns3:leaf and
|ns:leaf.

In some other cases, this doesn’t make too much sense. For example the pattern |ns:* cannot match any node named
|ns: because this isn’t a valid pattern.

To check if a wildcard is allowed to match zero occurrences or not, see the TL;DR table.

TL;DR

The table below regroups all the possible valid uses of wildcard operators located between two adjacent delimiters.

Reminder

If the occurrence of wildcard is not listed in this table, it is bound to belong to the name context.

pattern example context can match nothing
^@$ @ same as the global context yes
^@: @:leaf full name yes
^@| @|leaf path yes
^@-> @->|leaf full path yes
:@$ |ns:@ full name no
:@: |ns:@:leaf full name yes
:@| |ns:@|leaf full name no
:@-> |ns:@->|leaf full name no
|@$ |root|@ path no
|@: |root|@:leaf full name yes
|@| |root|@|leaf path yes
|@-> |root|@->|leaf path no
->@$ |root->@ full path yes
->@| |root->@|leaf path yes
->@-> |root->@->|leaf full path yes

Note: The characters ^ and $ used in the table respectively refer to the start and the end of a string. As for the
character @, it is to be replaced by one or more wildcards.

Combining Wildcards

If needed, it is possible to come up with some fancy patterns by successively writing multiple wildcard operators that
will combine to define a specific number of occurrences. For example, the pattern ... matches 3 occurrences of the
context element, while .+ matches at least 2 occurrences, and ..?? matches from 2 to 4 occurrences.

The number of occurrences to match resulting from such a combination is easy to figure out. Let’s consider the regular
expression notation {m,n} describing from m to n occurrences, and {m,} that specifies at least m
occurrences. Rewriting the four wildcard operators following this notation gives:

• * -> {0,}

• + -> {1,}

• ? -> {0,1}

• . -> {1,1}

1.4. Pattern Matching 9

bana Documentation, Release 0.1.0

Combining wildcard operators is equivalent to adding their range of occurrences. From the previous example, the
pattern .+ equals to {1,1} + {1,}, that is {2,}, and the pattern ..?? equals to {1,1} + {1,1} + {0,1}
+ {0,1}, that is {2,4}.

Namespace Construct

The pattern |root|. allows matching any node which has root as direct parent but it is not enough if filtering
namespaces is also required. This is why, as per the syntax rules, a special construct has been added to allow a full
name to start with the : delimiter if it is followed by one or more wildcards. With this addition, the pattern |root|:.
makes it possible to match any node directly parented under root that does not belong to any namespce.

Examples

Matching DG Nodes

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> # Match the nodes named 'leaf' belonging to any namespace.
>>> OpenMaya.MGlobal.bnMatchFullName('*:leaf', 'leaf')
True
>>> OpenMaya.MGlobal.bnMatchFullName('*:leaf', 'ns:leaf')
True
>>> OpenMaya.MGlobal.bnMatchFullName('*:leaf', 'nsa:nsb:leaf')
True
>>> # Match the nodes directly nested under a namespace 'ns'.
>>> OpenMaya.MGlobal.bnMatchFullName('ns:.', 'ns:leaf')
True
>>> OpenMaya.MGlobal.bnMatchFullName('ns:.', 'ns:nsa:leaf')
False
>>> # Match the nodes recursively nested under a namespace 'ns'.
>>> OpenMaya.MGlobal.bnMatchFullName('ns:+', 'ns:leaf')
True
>>> OpenMaya.MGlobal.bnMatchFullName('ns:+', 'ns:nsa:leaf')
True
>>> OpenMaya.MGlobal.bnMatchFullName('ns:+', 'ns:nsa:nsb:leaf')
True

Matching DAG Nodes

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> # Match the nodes directly parented under the world.
>>> OpenMaya.MGlobal.bnMatchPath('|.', '|leaf')
True
>>> OpenMaya.MGlobal.bnMatchPath('|.', '|ns:leaf')
True
>>> OpenMaya.MGlobal.bnMatchPath('|.', '|root|leaf')
False
>>> # Match the nodes directly parented under the world but not belonging to
... # any namespace.
>>> OpenMaya.MGlobal.bnMatchPath('|:.', '|leaf')

10 Chapter 1. User’s Guide

bana Documentation, Release 0.1.0

True
>>> OpenMaya.MGlobal.bnMatchPath('|:.', '|ns:leaf')
False
>>> OpenMaya.MGlobal.bnMatchPath('|:.', '|root|leaf')
False
>>> # Match the nodes containing 'Shape' anywhere in the hierarchy but not
... # belonging to any namespace.
>>> OpenMaya.MGlobal.bnMatchPath('+|*Shape*', '|cube|cubeShape')
True
>>> OpenMaya.MGlobal.bnMatchPath('+|*Shape*', '|root|sphere|sphereShape1')
True
>>> OpenMaya.MGlobal.bnMatchPath('+|*Shape*', '|cube|ns:cubeShape')
False
>>> # Match the nodes containing 'Shape' anywhere in the hierarchy.
>>> OpenMaya.MGlobal.bnMatchPath('+|*:*Shape*', '|cube|cubeShape')
True
>>> OpenMaya.MGlobal.bnMatchPath('+|*:*Shape*', '|root|sphere|sphereShape1')
True
>>> OpenMaya.MGlobal.bnMatchPath('+|*:*Shape*', '|cube|ns:cubeShape')
True

Retrieving Nodes

Out of the box, the Maya API is a bit cumbersome when it comes to retrieving DG and DAG nodes from a scene. This
usually leads each TD to write their own code for the task, and this is also something that Bana aims to provide.

The goal here is to offer a higher-level set of methods allowing to retrieve nodes with enough flexibility to cover most
of a TD’s needs while remaining as fast as possible.

Since these methods are in fact iterators, it is easy to build on top of them in the case where more filtering options are
required, such as for example skipping the DAG shapes that are templated.

But what sets this library apart from the usual implementations is its well-defined pattern matching specification.
When Maya’s interpretation of the wildcard character * is everyone’s guess, Bana offers both precise and predictable
results.

Design

In Bana, there are 2 groups of classes from where the scene nodes can be retrieved:

• the function set classes MFnDependencyNode and MFnDagNode.

• the lower-level classes MObject and MDagPath.

The former group represents the most common use case while the second can be used to slightly speed things up when
the extra functionalities brought by the MFn* classes are not required.

For each of these classes, two types of methods are then exposed as the API:

• the methods starting with bnFind which return an iterator over a collection of nodes matching the input filters.

• the methods starting with bnGet which return a single object matching the input filters. If zero or more nodes
are found, then None is returned.

When using the lower-level family of classes, it is possible to explictely pass a node type to match through the fnType
parameter but in the case of the function set classes, no fnType parameter is defined. Instead the node type to match is
deduced from the calling class. In other words, a call to maya.OpenMaya.MFnDagNode.bnFind() will match

1.5. Retrieving Nodes 11

bana Documentation, Release 0.1.0

any node of type maya.OpenMaya.kDagNode while calling maya.OpenMaya.MFnTransform.bnFind()
will only match transform nodes.

Note: Node names are available from the maya.OpenMaya.MFnDependencyNode class but not directly from
the maya.OpenMaya.MObject one. As a result, retrieving maya.OpenMaya.MObject objects from a pattern
will internally convert them to maya.OpenMaya.MFnDependencyNode, in which case there won’t be much
benefits from using the MObject.bnFind() method in place of MFnDependencyNode.bnFind().

DG vs DAG Nodes

Although it is possible to iterate over all DG or DAG nodes using the methods exposed within the
MFnDependencyNode and MObject classes, it is not possible to filter DAG nodes this way using a path pattern.
Indeed, these methods only accept name patterns.

Hence it is recommended to use instead the methods defined in the classes MFnDagNode and MDagPath whenever
DAG nodes are to be retrieved. Furthermore, these offer a boost in performances, especially when only a specific
branch of DAG nodes needs to be traversed through the use of the bnFindChildren() and bnGetChild()
methods.

Examples

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> # Retrieve a transform node named 'root'.
>>> root = OpenMaya.MFnTransform.bnGet(pattern='*|root')
>>> # Recursively iterate over all the DAG nodes child of 'root'.
>>> for node in root.bnFindChildren():
... print(node)
>>> # Find all the mesh nodes in the scene containing the word 'Shape' but
... # not belonging to any namespace.
>>> for node in OpenMaya.MFnMesh.bnFind(pattern='*|*Shape*'):
... print(node)

Extension Categories

Each extension provided with Bana is written to answer a specific need belonging to one of these categories:

explicit Maya’s implementation was deemed ambiguous possibly because of a lack of well-defined specification or
documentation.

fix A specific method needs to be modified but creating a new method prefixed with bn isn’t an option. Therefore,
the original method is fixed in place by being replaced. This approach is only used for magic methods such as
__str__() and __hash__().

foundation The extension is considered as a fundamental functionality that is missing from Maya’s API.

MScriptUtil The original method needs to be wrapped to abstract away the used of the maya.OpenMaya.
MScriptUtil class. Some of these methods are marked as not implemented to document a better alternative
approach.

12 Chapter 1. User’s Guide

bana Documentation, Release 0.1.0

no throw By default, exceptions are being thrown whenever a method returns a maya.OpenMaya.MStatus
object with a value that is not kSuccess. This is not justified in cases where it is acceptable that the call
to a method might or might not output a valid result. For example, it is expected for a MFn* class instance
to fail accessing its maya.OpenMaya.MObject object if the function set hasn’t been fully initialized yet,
this doesn’t have to be considered as an error. A better suited return value here is None since it carries the
information that no valid object can be retrieved at the moment, while being even more convenient to check
validity against.

Note: The category for a specific extension can be found in the documentation associated with that extension.

API Reference

All the extensions of Bana are described here.

Initialization

initialize Initialize the extensions.

bana.initialize()
Initialize the extensions.

The patches from the Bana package are searched and applied to the Maya API. Patches that seem to have already
been applied are skipped.

Extensions

All the patches to apply to the Maya API are listed here and are named after their destination class.

OpenMaya

OpenMaya.MDagPath

bnFind DAG path iterator.
bnGet Retrieve a single DAG path.
__hash__ Hash value that can be relied on.
__str__ Full path name.
bnFindChildren DAG path iterator over the children.
bnGetChild Retrieve a single DAG path child.
bnGetParent Retrieve the parent DAG path.

classmethod MDagPath.bnFind(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid, recursive=True,
traverseUnderWorld=True, copy=True)

DAG path iterator.

1.7. API Reference 13

bana Documentation, Release 0.1.0

Categories: foundation.

Parameters

• pattern (str) – Path or full path pattern of the DAG paths to match. Wildcards are
allowed.

• fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

• recursive (bool) – True to search recursively.

• traverseUnderWorld (bool) – True to search within the underworld.

• copy (bool) – True to copy each DAG path. It is useful when data persistence is required,
such as when the DAG paths are to be stored into a list, otherwise it is faster to set it to
False.

Yields maya.OpenMaya.MDagPath – The paths found.

Note: The pattern matching’s global context is set to full path if the parameter traverseUnderWorld is
True, and to path otherwise. See Matching Rules.

See also:

Pattern Matching, Retrieving Nodes

classmethod MDagPath.bnGet(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid, recursive=True,
traverseUnderWorld=True)

Retrieve a single DAG path.

Categories: foundation.

Parameters

• pattern (str) – Path or full path pattern of the DAG path to match. Wildcards are
allowed.

• fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

• recursive (bool) – True to search recursively.

• traverseUnderWorld (bool) – True to search within the underworld.

Returns The DAG path found. If none or many were found, None is returned.

Return type maya.OpenMaya.MDagPath

Note: The pattern matching’s global context is set to full path if the parameter traverseUnderWorld is
True, and to path otherwise. See Matching Rules.

See also:

Pattern Matching, Retrieving Nodes

MDagPath.__hash__()
Hash value that can be relied on.

This is required because the original method returns different values for multiple instances pointing to a same
object, thus making the MDagPath object not usable with hash-based containers such as dictionaries and sets.

14 Chapter 1. User’s Guide

bana Documentation, Release 0.1.0

Categories: fix.

Returns The hash value representing this object.

Return type int

MDagPath.__str__()
Full path name.

It is helpful when interacting with the commands layer by not having to manually call the fullPathName()
method each time a MDagPath object needs to be passed to a command.

Categories: fix.

Returns The full path name.

Return type str

MDagPath.bnFindChildren(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid, recursive=True,
traverseUnderWorld=True, copy=True)

DAG path iterator over the children.

Categories: foundation.

Parameters

• pattern (str) – Path or full path pattern of the DAG paths to match, relative to the
current DAG path. Wildcards are allowed.

• fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

• recursive (bool) – True to search recursively.

• traverseUnderWorld (bool) – True to search within the underworld.

• copy (bool) – True to copy each DAG path. It is useful when data persistence is required,
such as when the DAG paths are to be stored into a list, otherwise it is faster to set it to
False.

Yields maya.OpenMaya.MDagPath – The paths found.

Note: The pattern matching’s global context is set to full path if the parameter traverseUnderWorld is
True, and to path otherwise. See Matching Rules.

See also:

Pattern Matching, Retrieving Nodes

MDagPath.bnGetChild(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid, recursive=True, tra-
verseUnderWorld=True)

Retrieve a single DAG path child.

Categories: foundation.

Parameters

• pattern (str) – Path or full path pattern of the DAG path to match, relative to the current
DAG path. Wildcards are allowed.

• fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

1.7. API Reference 15

bana Documentation, Release 0.1.0

• recursive (bool) – True to search recursively.

• traverseUnderWorld (bool) – True to search within the underworld.

Returns The path found.

Return type maya.OpenMaya.MDagPath

Note: The pattern matching’s global context is set to full path if the parameter traverseUnderWorld is
True, and to path otherwise. See Matching Rules.

See also:

Pattern Matching, Retrieving Nodes

MDagPath.bnGetParent()
Retrieve the parent DAG path.

Categories: foundation.

Returns The parent DAG path, or None if this DAG path is directly parented under the world.

Return type maya.OpenMaya.MDagPath or None

OpenMaya.MFnBase

bnObject Retrieve the object attached to this function set.

MFnBase.bnObject()
Retrieve the object attached to this function set.

Categories: no throw.

Returns The object or None if no valid object is attached to this function set.

Return type maya.OpenMaya.MObject or None

OpenMaya.MFnDagNode

bnFind DAG node iterator.
bnGet Retrieve a single DAG node.
__str__ Full path name.
bnFindChildren DAG node iterator over the children.
bnGetChild Retrieve a single DAG node child.

classmethod MFnDagNode.bnFind(pattern=None, recursive=True, traverseUnderWorld=True)
DAG node iterator.

The calling class defines the function set type for which the nodes need to be compatible with. It also represents
the type of the object returned.

16 Chapter 1. User’s Guide

bana Documentation, Release 0.1.0

Categories: foundation.

Parameters

• pattern (str) – Path or full path pattern of the DAG nodes to match. Wildcards are
allowed.

• recursive (bool) – True to search recursively.

• traverseUnderWorld (bool) – True to search within the underworld.

Yields maya.OpenMaya.MDagNode – The nodes found.

Note: The pattern matching’s global context is set to full path if the parameter traverseUnderWorld is
True, and to path otherwise. See Matching Rules.

See also:

Pattern Matching, Retrieving Nodes

classmethod MFnDagNode.bnGet(pattern=None, recursive=True, traverseUnderWorld=True)
Retrieve a single DAG node.

The calling class defines the function set type for which the node needs to be compatible with. It also represents
the type of the object returned.

Categories: foundation.

Parameters

• pattern (str) – Path or full path pattern of the DAG node to match. Wildcards are
allowed.

• recursive (bool) – True to search recursively.

• traverseUnderWorld (bool) – True to search within the underworld.

Returns The DAG node found. If none or many were found, None is returned.

Return type maya.OpenMaya.MFnDagNode

Note: The pattern matching’s global context is set to full path if the parameter traverseUnderWorld is
True, and to path otherwise. See Matching Rules.

See also:

Pattern Matching, Retrieving Nodes

MFnDagNode.__str__()
Full path name.

It is helpful when interacting with the commands layer by not having to manually call the fullPathName()
method each time a MFnDagNode object needs to be passed to a command.

Categories: fix.

Returns The full path name.

Return type str

1.7. API Reference 17

bana Documentation, Release 0.1.0

MFnDagNode.bnFindChildren(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid, recursive=True,
traverseUnderWorld=True)

DAG node iterator over the children.

Categories: foundation.

Parameters

• pattern (str) – Path or full path pattern of the DAG nodes to match, relative to the
current node. Wildcards are allowed.

• fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

• recursive (bool) – True to search recursively.

• traverseUnderWorld (bool) – True to search within the underworld.

Yields maya.OpenMaya.MDagNode – The nodes found.

Note: The pattern matching’s global context is set to full path if the parameter traverseUnderWorld is
True, and to path otherwise. See Matching Rules.

See also:

Pattern Matching, Retrieving Nodes

MFnDagNode.bnGetChild(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid, recursive=True, tra-
verseUnderWorld=True)

Retrieve a single DAG node child.

Categories: foundation.

Parameters

• pattern (str) – Path or full path pattern of the DAG nodes to match, relative to the
current node. Wildcards are allowed.

• fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

• recursive (bool) – True to search recursively.

• traverseUnderWorld (bool) – True to search within the underworld.

Returns The node found.

Return type maya.OpenMaya.MDagNode

Note: The pattern matching’s global context is set to full path if the parameter traverseUnderWorld is
True, and to path otherwise. See Matching Rules.

See also:

Pattern Matching, Retrieving Nodes

OpenMaya.MFnDependencyNode

18 Chapter 1. User’s Guide

bana Documentation, Release 0.1.0

bnFind DG node iterator.
bnGet Retrieve a single DG node.
__hash__ Hash value that can be relied on.
__str__ Name.

classmethod MFnDependencyNode.bnFind(pattern=None)
DG node iterator.

The calling class defines the function set type for which the nodes need to be compatible with. It also represents
the type of the objects yielded.

Categories: foundation.

Parameters pattern (str) – Full name pattern of the DG nodes to match. Wildcards are allowed.

Yields cls – The DG nodes found.

See also:

Pattern Matching, Retrieving Nodes

classmethod MFnDependencyNode.bnGet(pattern=None)
Retrieve a single DG node.

The calling class defines the function set type for which the node needs to be compatible with. It also represents
the type of the object returned.

Categories: foundation.

Parameters pattern (str) – Full name pattern of the DG node to match. Wildcards are allowed.

Returns The DG node found. If none or many were found, None is returned.

Return type cls

See also:

Pattern Matching, Retrieving Nodes

MFnDependencyNode.__hash__()
Hash value that can be relied on.

This is required because the original method returns different values for multiple instances pointing to a same
object, thus making the MFnDependencyNode object not usable with hash-based containers such as dictio-
naries and sets.

Categories: fix.

Returns The hash value representing this object.

Return type int

1.7. API Reference 19

bana Documentation, Release 0.1.0

MFnDependencyNode.__str__()
Name.

It is helpful when interacting with the commands layer by not having to manually call the name() method each
time a MFnDependencyNode object needs to be passed to a command.

Categories: fix.

Returns The name.

Return type str

OpenMaya.MFnTransform

bnGetScale Retrieve the scale component.
bnSetScale Set the scale component.
bnScaleBy Add to the scale component by scaling relatively.
bnGetShear Retrieve the shear component.
bnSetShear Set the shear component.
bnShearBy Add to the shear component by shearing relatively.

MFnTransform.bnGetScale()
Retrieve the scale component.

Categories: MScriptUtil.

Returns The scale component.

Return type list [x, y, z]

MFnTransform.bnSetScale(scale)
Set the scale component.

Categories: MScriptUtil.

Parameters scale (sequence of 3 floats) – New scale component.

MFnTransform.bnScaleBy(scale)
Add to the scale component by scaling relatively.

Categories: MScriptUtil.

Parameters scale (sequence of 3 floats) – Relative value to scale by.

MFnTransform.bnGetShear()
Retrieve the shear component.

Categories: MScriptUtil.

Returns The shear component.

Return type list [x, y, z]

20 Chapter 1. User’s Guide

bana Documentation, Release 0.1.0

MFnTransform.bnSetShear(shear)
Set the shear component.

Categories: MScriptUtil.

Parameters shear (sequence of 3 floats) – New shear component.

MFnTransform.bnShearBy(shear)
Add to the shear component by shearing relatively.

Categories: MScriptUtil.

Parameters shear (sequence of 3 floats) – Relative value to shear by.

OpenMaya.MGlobal

bnIsValidName Check if a name is strictly well-formed.
bnIsValidFullName Check if a full name is strictly well-formed.
bnIsValidPath Check if a path is strictly well-formed.
bnIsValidFullPath Check if a full path is strictly well-formed.
bnMakeMatchNameFunction Create a function to match names to a pattern.
bnMakeMatchFullNameFunction Create a function to match full names to a pattern.
bnMakeMatchPathFunction Create a function to match paths to a pattern.
bnMakeMatchFullPathFunction Create a function to match full paths to a pattern.
bnMatchName Check if a name matches a given pattern.
bnMatchFullName Check if a full name matches a given pattern.
bnMatchPath Check if a path matches a given pattern.
bnMatchFullPath Check if a full path matches a given pattern.

classmethod MGlobal.bnIsValidName(name, allowWildcards=False)
Check if a name is strictly well-formed.

Names can identify DG nodes, excluding the ones carrying any namespace or hierarchy information. They are
made of character elements, that is alphanumeric characters, underscores, and wildcards.

Categories: explicit.

Parameters

• path (str) – Name to check.

• allowWildcards (bool) – True to consider the wildcards as valid characters.

Returns True if the name is strictly well-formed.

Return type bool

See also:

Pattern Matching

classmethod MGlobal.bnIsValidFullName(name, allowWildcards=False, matchRelative=False)
Check if a full name is strictly well-formed.

1.7. API Reference 21

bana Documentation, Release 0.1.0

Full names can fully identify any DG node. They are composed by one or more name elements, each separated
by the namespace delimiter :.

Categories: explicit.

Parameters

• path (str) – Full name to check.

• allowWildcards (bool) – True to consider the wildcards as valid characters.

• matchRelative (bool) – True to allow matching relatively to a parent namespace.
That is, full names starting with the namespace delimiter : are allowed.

Returns True if the full name is strictly well-formed.

Return type bool

See also:

Pattern Matching

classmethod MGlobal.bnIsValidPath(path, allowWildcards=False)
Check if a path is strictly well-formed.

Paths can identify DAG nodes, excluding the ones carrying any underworld information. They are composed
by one or more full name elements, each starting with the hierarchy delimiter |.

Categories: explicit.

Parameters

• path (str) – Path to check.

• allowWildcards (bool) – True to consider the wildcards as valid characters.

Returns True if the path is strictly well-formed.

Return type bool

See also:

Pattern Matching

classmethod MGlobal.bnIsValidFullPath(path, allowWildcards=False, matchRelative=False)
Check if a full path is strictly well-formed.

Full paths can fully identify any DAG node. They are composed by one or more path elements, each separated
by the underworld delimiter ->.

Categories: explicit.

Parameters

• path (str) – Full path to check.

• allowWildcards (bool) – True to consider the wildcards as valid characters.

• matchRelative (bool) – True to allow matching relatively to a parent path. That is,
full paths starting with the underworld delimiter -> are allowed.

Returns True if the full path is strictly well-formed.

Return type bool

22 Chapter 1. User’s Guide

bana Documentation, Release 0.1.0

See also:

Pattern Matching

classmethod MGlobal.bnMakeMatchNameFunction(pattern)
Create a function to match names to a pattern.

Categories: explicit.

Parameters pattern (str) – Name pattern to build. Wildcards are allowed.

Returns A function expecting a single parameter, that is the name to check the pattern against. The
return value of this function is a value that evaluates to True or False in a boolean operation.
The value passed to the parameter of this function must be a strictly well-formed name. No
check is done to ensure the validity of the input but this can be done manually using MGlobal.
bnIsValidName().

Return type function

Raises ValueError – The pattern is not well-formed.

Examples

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> iterator = OpenMaya.MItDependencyNodes()
>>> match = OpenMaya.MGlobal.bnMakeMatchNameFunction('*Shape*')
>>> while not iterator.isDone():
... obj = iterator.thisNode()
... name = OpenMaya.MFnDependencyNode(obj).name()
... if match(name):
... print(name)
... iterator.next()

See also:

Pattern Matching, MGlobal.bnIsValidName()

classmethod MGlobal.bnMakeMatchFullNameFunction(pattern, matchRelative=False)
Create a function to match full names to a pattern.

Categories: explicit.

Parameters

• pattern (str) – Full name pattern to build. Wildcards are allowed.

• matchRelative (bool) – True to allow matching relatively to a parent namespace.
That is, full names starting with the namespace delimiter : are allowed.

Returns A function expecting a single parameter, that is the full name to check the pattern against.
The return value of this function is a value that evaluates to True or False in a boolean
operation. The value passed to the parameter of this function must be a strictly well-formed full
name. No check is done to ensure the validity of the input but this can be done manually using
MGlobal.bnIsValidFullName().

Return type function

1.7. API Reference 23

bana Documentation, Release 0.1.0

Raises ValueError – The pattern is not well-formed.

See also:

Pattern Matching, MGlobal.bnIsValidFullName()

classmethod MGlobal.bnMakeMatchPathFunction(pattern)
Create a function to match paths to a pattern.

Categories: explicit.

Parameters pattern (str) – Path pattern to build. Wildcards are allowed.

Returns A function expecting a single parameter, that is the path to check the pattern against. The
return value of this function is a value that evaluates to True or False in a boolean operation.
The value passed to the parameter of this function must be a strictly well-formed path. No
check is done to ensure the validity of the input but this can be done manually using MGlobal.
bnIsValidPath().

Return type function

Raises ValueError – The pattern is not well-formed.

Examples

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> iterator = OpenMaya.MItDag()
>>> match = OpenMaya.MGlobal.bnMakeMatchPathFunction('*|*Shape*')
>>> dagPath = OpenMaya.MDagPath()
>>> while not iterator.isDone():
... iterator.getPath(dagPath)
... path = dagPath.fullPathName()
... if match(path):
... print(path)
... iterator.next()

See also:

Pattern Matching, MGlobal.bnIsValidPath()

classmethod MGlobal.bnMakeMatchFullPathFunction(pattern, matchRelative=False)
Create a function to match full paths to a pattern.

Categories: explicit.

Parameters

• pattern (str) – Full path pattern to build. Wildcards are allowed.

• matchRelative (bool) – True to allow matching relatively to a parent path. That is,
full paths starting with the underworld delimiter -> are allowed.

Returns A function expecting a single parameter, that is the full path to check the pattern against.
The return value of this function is a value that evaluates to True or False in a boolean
operation. The value passed to the parameter of this function must be a strictly well-formed full
path. No check is done to ensure the validity of the input but this can be done manually using
MGlobal.bnIsValidFullPath().

24 Chapter 1. User’s Guide

bana Documentation, Release 0.1.0

Return type function

Raises ValueError – The pattern is not well-formed.

See also:

Pattern Matching, MGlobal.bnIsValidFullPath()

classmethod MGlobal.bnMatchName(pattern, name)
Check if a name matches a given pattern.

Both pattern and name must be strictly well-formed.

If the same pattern is to be matched several times, consider using MGlobal.
bnMakeMatchNameFunction() instead.

Categories: explicit.

Parameters

• pattern (str) – Pattern to match to. Wildcards are allowed.

• path (str) – Name to check.

Returns True if the name matches the given pattern.

Return type bool

See also:

Pattern Matching, MGlobal.bnIsValidName()

classmethod MGlobal.bnMatchFullName(pattern, name, matchRelative=False)
Check if a full name matches a given pattern.

Both pattern and full name must be strictly well-formed.

If the same pattern is to be matched several times, consider using MGlobal.
bnMakeMatchFullNameFunction() instead.

Categories: explicit.

Parameters

• pattern (str) – Pattern to match to. Wildcards are allowed.

• path (str) – Full name to check.

• matchRelative (bool) – True to allow matching relatively to a parent namespace.
That is, full names starting with the namespace delimiter : are allowed.

Returns True if the full name matches the given pattern.

Return type bool

See also:

Pattern Matching, MGlobal.bnIsValidFullName()

1.7. API Reference 25

bana Documentation, Release 0.1.0

classmethod MGlobal.bnMatchPath(pattern, path)
Check if a path matches a given pattern.

Both pattern and path must be strictly well-formed.

If the same pattern is to be matched several times, consider using MGlobal.
bnMakeMatchPathFunction() instead.

Categories: explicit.

Parameters

• pattern (str) – Pattern to match to. Wildcards are allowed.

• path (str) – Path to check.

Returns True if the path matches the given pattern.

Return type bool

See also:

Pattern Matching, MGlobal.bnIsValidPath()

classmethod MGlobal.bnMatchFullPath(pattern, path, matchRelative=False)
Check if a full path matches a given pattern.

Both pattern and full path must be strictly well-formed.

If the same pattern is to be matched several times, consider using MGlobal.
bnMakeMatchFullPathFunction() instead.

Categories: explicit.

Parameters

• pattern (str) – Pattern to match to. Wildcards are allowed.

• path (str) – Full path to check.

• matchRelative (bool) – True to allow matching relatively to a parent path. That is,
full paths starting with the underworld delimiter -> are allowed.

Returns True if the full path matches the given pattern.

Return type bool

See also:

Pattern Matching, MGlobal.bnIsValidFullPath()

OpenMaya.MMatrix

__str__ Printable-friendly version of the values.
bnGet Retrieve the values as a two-dimensional 4 x 4 list.

MMatrix.__str__()
Printable-friendly version of the values.

Categories: fix.

26 Chapter 1. User’s Guide

bana Documentation, Release 0.1.0

Returns A printable-friendly version of the values.

Return type str

MMatrix.bnGet()
Retrieve the values as a two-dimensional 4 x 4 list.

Categories: MScriptUtil.

Returns The two-dimensional 4 x 4 list of values.

Return type list of list of floats

OpenMaya.MObject

bnFind DG node iterator.
bnGet Retrieve a single DG node.
__hash__ Hash value that can be relied on.

classmethod MObject.bnFind(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid)
DG node iterator.

Categories: foundation.

Parameters

• pattern (str) – Full name pattern of the DG nodes to match. Wildcards are allowed.

• fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

Yields maya.OpenMaya.MObject – The DG nodes found.

See also:

Pattern Matching, Retrieving Nodes

classmethod MObject.bnGet(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid)
Retrieve a single DG node.

Categories: foundation.

Parameters

• pattern (str) – Full name pattern of the DG node to match. Wildcards are allowed.

• fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

Returns The DG node found. If none or many were found, None is returned.

Return type maya.OpenMaya.MObject

See also:

Pattern Matching, Retrieving Nodes

1.7. API Reference 27

bana Documentation, Release 0.1.0

MObject.__hash__()
Hash value that can be relied on.

This is required because the original method returns different values for multiple instances pointing to a same
object, thus making the MObject object not usable with hash-based containers such as dictionaries and sets.

Categories: fix.

Returns The hash value representing this object.

Return type int

OpenMaya.MPoint

__str__ Printable-friendly version of the values.
bnGet Retrieve the values as a list.

MPoint.__str__()
Printable-friendly version of the values.

Categories: fix.

Returns A printable-friendly version of the values.

Return type str

MPoint.bnGet()
Retrieve the values as a list.

Categories: MScriptUtil.

Returns The values.

Return type list [x, y, z, w]

OpenMaya.MQuaternion

__str__ Printable-friendly version of the values.
bnGet Retrieve the values as a list.

MQuaternion.__str__()
Printable-friendly version of the values.

Categories: fix.

Returns A printable-friendly version of the values.

Return type str

MQuaternion.bnGet()
Retrieve the values as a list.

Categories: MScriptUtil.

28 Chapter 1. User’s Guide

bana Documentation, Release 0.1.0

Returns The values.

Return type list [x, y, z, w]

OpenMaya.MTransformationMatrix

bnAddRotation Not implemented.
bnGetRotation Not implemented.
bnSetRotation Not implemented.
bnAddRotationQuaternion Not implemented.
bnGetRotationQuaternion Not implemented.
bnSetRotationQuaternion Not implemented.
bnAddScale Add to the scale component by scaling relatively.
bnGetScale Retrieve the scale component.
bnSetScale Set the scale component.
bnAddShear Add to the shear component by shearing relatively.
bnGetShear Retrieve the shear component.
bnSetShear Set the shear component.

MTransformationMatrix.bnAddRotation(rotation, order=maya.OpenMaya.MTransformationMatrix.kXYZ,
space=maya.OpenMaya.MSpace.kTransform)

Not implemented. See the examples for an alternative approach.

Categories: MScriptUtil.

Examples

Alternative approach:

>>> from maya import OpenMaya
>>> transform = OpenMaya.MFnTransform()
>>> transform.create()
>>> xform = transform.transformation()
>>> rotation = OpenMaya.MEulerRotation(1.0, 2.0, 3.0,
... OpenMaya.MEulerRotation.kXYZ)
>>> xform.rotateBy(rotation, OpenMaya.MSpace.kTransform)
>>> transform.set(xform)

MTransformationMatrix.bnGetRotation(space=maya.OpenMaya.MSpace.kTransform)
Not implemented. See the examples for an alternative approach.

Categories: MScriptUtil.

Examples

Alternative approach:

1.7. API Reference 29

bana Documentation, Release 0.1.0

>>> from maya import OpenMaya
>>> transform = OpenMaya.MFnTransform()
>>> transform.create()
>>> rotation = transform.transformation().eulerRotation()
>>> [rotation.x, rotation.y, rotation.z]
[0.0, 0.0, 0.0]
>>> rotation.order
0

MTransformationMatrix.bnSetRotation(rotation, order=maya.OpenMaya.MTransformationMatrix.kXYZ,
space=maya.OpenMaya.MSpace.kTransform)

Not implemented. See the examples for an alternative approach.

Categories: MScriptUtil.

Examples

Alternative approach:

>>> from maya import OpenMaya
>>> transform = OpenMaya.MFnTransform()
>>> transform.create()
>>> xform = transform.transformation()
>>> rotation = OpenMaya.MEulerRotation(1.0, 2.0, 3.0,
... OpenMaya.MEulerRotation.kXYZ)
>>> xform.rotateTo(rotation)
>>> transform.set(xform)

MTransformationMatrix.bnAddRotationQuaternion(rotation, space=maya.OpenMaya.MSpace.kTransform)
Not implemented. See the examples for an alternative approach.

Categories: MScriptUtil.

Examples

Alternative approach:

>>> from maya import OpenMaya
>>> transform = OpenMaya.MFnTransform()
>>> transform.create()
>>> xform = transform.transformation()
>>> rotation = OpenMaya.MQuaternion(1.0, 2.0, 3.0, 4.0)
>>> xform.rotateBy(rotation, OpenMaya.MSpace.kTransform)
>>> transform.set(xform)

MTransformationMatrix.bnGetRotationQuaternion(space=maya.OpenMaya.MSpace.kTransform)
Not implemented. See the examples for an alternative approach.

Categories: MScriptUtil.

30 Chapter 1. User’s Guide

bana Documentation, Release 0.1.0

Examples

Alternative approach:

>>> from maya import OpenMaya
>>> transform = OpenMaya.MFnTransform()
>>> transform.create()
>>> rotation = transform.transformation().rotation()
>>> [rotation.x, rotation.y, rotation.z, rotation.w]
[0.0, 0.0, 0.0, 1.0]

MTransformationMatrix.bnSetRotationQuaternion(rotation, or-
der=maya.OpenMaya.MTransformationMatrix.kXYZ,
space=maya.OpenMaya.MSpace.kTransform)

Not implemented. See the examples for an alternative approach.

Categories: MScriptUtil.

Examples

Alternative approach:

>>> from maya import OpenMaya
>>> transform = OpenMaya.MFnTransform()
>>> transform.create()
>>> xform = transform.transformation()
>>> rotation = OpenMaya.MQuaternion(1.0, 2.0, 3.0, 4.0)
>>> xform.rotateTo(rotation)
>>> transform.set(xform)

MTransformationMatrix.bnAddScale(scale, space=maya.OpenMaya.MSpace.kTransform)
Add to the scale component by scaling relatively.

Categories: MScriptUtil.

Parameters

• scale (sequence of 3 floats) – Relative value to scale by.

• space (maya.OpenMaya.MSpace.Space) – Transform space in which to perform the
scale.

MTransformationMatrix.bnGetScale(space=maya.OpenMaya.MSpace.kTransform)
Retrieve the scale component.

Categories: MScriptUtil.

Parameters space (maya.OpenMaya.MSpace.Space) – Transform space in which to get the
scale.

Returns The scale component.

Return type list [x, y, z]

1.7. API Reference 31

bana Documentation, Release 0.1.0

MTransformationMatrix.bnSetScale(scale, space=maya.OpenMaya.MSpace.kTransform)
Set the scale component.

Categories: MScriptUtil.

Parameters

• scale (sequence of 3 floats) – New scale component.

• space (maya.OpenMaya.MSpace.Space) – Transform space in which to set the
scale.

MTransformationMatrix.bnAddShear(shear, space=maya.OpenMaya.MSpace.kTransform)
Add to the shear component by shearing relatively.

Categories: MScriptUtil.

Parameters

• shear (sequence of 3 floats) – Relative value to shear by.

• space (maya.OpenMaya.MSpace.Space) – Transform space in which to perform the
shear.

MTransformationMatrix.bnGetShear(space=maya.OpenMaya.MSpace.kTransform)
Retrieve the shear component.

Categories: MScriptUtil.

Parameters space (maya.OpenMaya.MSpace.Space) – Transform space in which to get the
shear.

Returns The shear component.

Return type list [x, y, z]

MTransformationMatrix.bnSetShear(shear, space=maya.OpenMaya.MSpace.kTransform)
Set the shear component.

Categories: MScriptUtil.

Parameters

• shear (sequence of 3 floats) – New shear component.

• space (maya.OpenMaya.MSpace.Space) – Transform space in which to set the
shear.

OpenMaya.MVector

__str__ Printable-friendly version of the values.
bnGet Retrieve the values as a list.
bnRotateBy Rotate the vector.

32 Chapter 1. User’s Guide

bana Documentation, Release 0.1.0

MVector.__str__()
Printable-friendly version of the values.

Categories: fix.

Returns A printable-friendly version of the values.

Return type str

MVector.bnGet()
Retrieve the values as a list.

Categories: MScriptUtil.

Returns The values.

Return type list [x, y, z]

MVector.bnRotateBy(rotation, order=maya.OpenMaya.MTransformationMatrix.kXYZ)
Rotate the vector.

Categories: MScriptUtil.

Parameters

• rotation (sequence of 3 floats) – Values in radian to rotate by.

• order (maya.OpenMaya.MTransformationMatrix.RotationOrder) – Rota-
tion order.

Returns The new vector.

Return type maya.OpenMaya.MVector

1.7. API Reference 33

bana Documentation, Release 0.1.0

34 Chapter 1. User’s Guide

CHAPTER 2

Developer’s Guide

Running the Tests

After making any code change in Bana, tests need to be evaluated to ensure that the library still behaves as expected.

Note: Some of the commands below are wrapped into make targets for convenience, see the file Makefile.

unittest

The tests are written using Python’s built-in unittest module. They are available in the tests directory and can
be fired through the tests/run.py file:

$ mayapy tests/run.py

It is possible to run specific tests by passing a space-separated list of partial names to match:

$ mayapy tests/run.py ThisTestClass and_that_function

The unittest‘s command line interface is also supported:

$ mayapy -m unittest discover -s tests -v

Finally, each test file is a standalone and can be directly executed.

coverage

The package coverage is used to help localize code snippets that could benefit from having some more testing:

35

https://docs.python.org/library/unittest.html
https://coverage.readthedocs.io

bana Documentation, Release 0.1.0

$ mayapy -m coverage run --source bana -m unittest discover -s tests
$ coverage report
$ coverage html

In no way should coverage be a race to the 100% mark since it is not always meaningful to cover each single
line of code. Furthermore, having some code fully covered isn’t synonym to having quality tests. This is our
responsability, as developers, to write each test properly regardless of the coverage status.

Benchmarks

A set of benchmarks are also available to keep the running performances in check. They are to be found in the
benchmarks folder and can be run in a similar fashion to the tests through the benchmarks/run.py file:

$ mayapy benchmarks/run.py

Or for more specificity:

$ mayapy benchmarks/run.py ThisBenchClass and_that_function

Here again, each benchmark file is a standalone and can be directly executed.

Note: The command line interface mayapy -m unittest discover is not supported for the benchmarks.

36 Chapter 2. Developer’s Guide

CHAPTER 3

Additional Information

Changelog

v0.1.0 (2017-01-11)

• Rewrote everything from scratch. Changes are not backward compatible.

v0.0.3 (2014-12-07)

• Overridden the __hash__ method for the MDagPath, MFnDependencyNode, and MObject classes.

• Minor changes.

v0.0.2 (2014-06-22)

• Added a method bnn_asFunctionSet to the MObject and MDagPath classes.

• Added a method bnn_getFunctionSet to the MObject class.

• Created a new internal module for data caching.

• Added the missing bnn identifiers for the test routines.

• Minor changes.

v0.0.1 (2014-06-21)

• Initial release.

37

bana Documentation, Release 0.1.0

Versioning

Version numbers comply with the Sementic Versioning Specification (SemVer).

In summary, version numbers are written in the form MAJOR.MINOR.PATCH where:

• incompatible API changes increment the MAJOR version.

• functionalities added in a backwards-compatible manner increment the MINOR version.

• backwards-compatible bug fixes increment the PATCH version.

Major version zero (0.y.z) is considered a special case denoting an initial development phase. Anything may change
at any time without the MAJOR version being incremented.

License

The MIT License (MIT)

Copyright (c) 2014-2017 Christopher Crouzet

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

38 Chapter 3. Additional Information

http://semver.org

Python Module Index

b
bana.OpenMaya.MDagPath, 13
bana.OpenMaya.MFnBase, 16
bana.OpenMaya.MFnDagNode, 16
bana.OpenMaya.MFnDependencyNode, 18
bana.OpenMaya.MFnTransform, 20
bana.OpenMaya.MGlobal, 21
bana.OpenMaya.MMatrix, 26
bana.OpenMaya.MObject, 27
bana.OpenMaya.MPoint, 28
bana.OpenMaya.MQuaternion, 28
bana.OpenMaya.MTransformationMatrix, 29
bana.OpenMaya.MVector, 32

39

bana Documentation, Release 0.1.0

40 Python Module Index

Index

Symbols
__hash__() (bana.OpenMaya.MDagPath.MDagPath

method), 14
__hash__() (bana.OpenMaya.MFnDependencyNode.MFnDependencyNode

method), 19
__hash__() (bana.OpenMaya.MObject.MObject method),

27
__str__() (bana.OpenMaya.MDagPath.MDagPath

method), 15
__str__() (bana.OpenMaya.MFnDagNode.MFnDagNode

method), 17
__str__() (bana.OpenMaya.MFnDependencyNode.MFnDependencyNode

method), 19
__str__() (bana.OpenMaya.MMatrix.MMatrix method),

26
__str__() (bana.OpenMaya.MPoint.MPoint method), 28
__str__() (bana.OpenMaya.MQuaternion.MQuaternion

method), 28
__str__() (bana.OpenMaya.MVector.MVector method),

33

B
bana.OpenMaya.MDagPath (module), 13
bana.OpenMaya.MFnBase (module), 16
bana.OpenMaya.MFnDagNode (module), 16
bana.OpenMaya.MFnDependencyNode (module), 18
bana.OpenMaya.MFnTransform (module), 20
bana.OpenMaya.MGlobal (module), 21
bana.OpenMaya.MMatrix (module), 26
bana.OpenMaya.MObject (module), 27
bana.OpenMaya.MPoint (module), 28
bana.OpenMaya.MQuaternion (module), 28
bana.OpenMaya.MTransformationMatrix (module), 29
bana.OpenMaya.MVector (module), 32
bnAddRotation() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix

method), 29
bnAddRotationQuaternion()

(bana.OpenMaya.MTransformationMatrix.MTransformationMatrix
method), 30

bnAddScale() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix
method), 31

bnAddShear() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix
method), 32

bnFind() (bana.OpenMaya.MDagPath.MDagPath class
method), 13

bnFind() (bana.OpenMaya.MFnDagNode.MFnDagNode
class method), 16

bnFind() (bana.OpenMaya.MFnDependencyNode.MFnDependencyNode
class method), 19

bnFind() (bana.OpenMaya.MObject.MObject class
method), 27

bnFindChildren() (bana.OpenMaya.MDagPath.MDagPath
method), 15

bnFindChildren() (bana.OpenMaya.MFnDagNode.MFnDagNode
method), 18

bnGet() (bana.OpenMaya.MDagPath.MDagPath class
method), 14

bnGet() (bana.OpenMaya.MFnDagNode.MFnDagNode
class method), 17

bnGet() (bana.OpenMaya.MFnDependencyNode.MFnDependencyNode
class method), 19

bnGet() (bana.OpenMaya.MMatrix.MMatrix method), 27
bnGet() (bana.OpenMaya.MObject.MObject class

method), 27
bnGet() (bana.OpenMaya.MPoint.MPoint method), 28
bnGet() (bana.OpenMaya.MQuaternion.MQuaternion

method), 28
bnGet() (bana.OpenMaya.MVector.MVector method), 33
bnGetChild() (bana.OpenMaya.MDagPath.MDagPath

method), 15
bnGetChild() (bana.OpenMaya.MFnDagNode.MFnDagNode

method), 18
bnGetParent() (bana.OpenMaya.MDagPath.MDagPath

method), 16
bnGetRotation() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix

method), 29
bnGetRotationQuaternion()

(bana.OpenMaya.MTransformationMatrix.MTransformationMatrix
method), 30

41

bana Documentation, Release 0.1.0

bnGetScale() (bana.OpenMaya.MFnTransform.MFnTransform
method), 20

bnGetScale() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix
method), 31

bnGetShear() (bana.OpenMaya.MFnTransform.MFnTransform
method), 20

bnGetShear() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix
method), 32

bnIsValidFullName() (bana.OpenMaya.MGlobal.MGlobal
class method), 21

bnIsValidFullPath() (bana.OpenMaya.MGlobal.MGlobal
class method), 22

bnIsValidName() (bana.OpenMaya.MGlobal.MGlobal
class method), 21

bnIsValidPath() (bana.OpenMaya.MGlobal.MGlobal
class method), 22

bnMakeMatchFullNameFunction()
(bana.OpenMaya.MGlobal.MGlobal class
method), 23

bnMakeMatchFullPathFunction()
(bana.OpenMaya.MGlobal.MGlobal class
method), 24

bnMakeMatchNameFunction()
(bana.OpenMaya.MGlobal.MGlobal class
method), 23

bnMakeMatchPathFunction()
(bana.OpenMaya.MGlobal.MGlobal class
method), 24

bnMatchFullName() (bana.OpenMaya.MGlobal.MGlobal
class method), 25

bnMatchFullPath() (bana.OpenMaya.MGlobal.MGlobal
class method), 26

bnMatchName() (bana.OpenMaya.MGlobal.MGlobal
class method), 25

bnMatchPath() (bana.OpenMaya.MGlobal.MGlobal class
method), 25

bnObject() (bana.OpenMaya.MFnBase.MFnBase
method), 16

bnRotateBy() (bana.OpenMaya.MVector.MVector
method), 33

bnScaleBy() (bana.OpenMaya.MFnTransform.MFnTransform
method), 20

bnSetRotation() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix
method), 30

bnSetRotationQuaternion()
(bana.OpenMaya.MTransformationMatrix.MTransformationMatrix
method), 31

bnSetScale() (bana.OpenMaya.MFnTransform.MFnTransform
method), 20

bnSetScale() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix
method), 31

bnSetShear() (bana.OpenMaya.MFnTransform.MFnTransform
method), 20

bnSetShear() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix

method), 32
bnShearBy() (bana.OpenMaya.MFnTransform.MFnTransform

method), 21

E
explicit, 12

F
fix, 12
foundation, 12

I
initialize() (in module bana), 13

M
MScriptUtil, 12

N
no throw, 13

42 Index

	User's Guide
	Overview
	Installation
	Tutorial
	Pattern Matching
	Retrieving Nodes
	Extension Categories
	API Reference

	Developer's Guide
	Running the Tests

	Additional Information
	Changelog
	Versioning
	License

	Python Module Index

