

Bana’s Documentation

Welcome! If you are just getting started, a recommended first read is the
Overview as it shortly covers the why, what, and how‘s of this
library. From there, the Installation then the Tutorial sections
should get you up to speed with the basics required to use it.

Looking how to use a specific function, class, or method? The whole public
interface is described in the API Reference section.

Please report bugs and suggestions on GitHub [https://github.com/christophercrouzet/bana].

User’s Guide

	Overview
	Features

	Usage

	Installation
	Installing pip

	System-Wide Installation

	Development Version

	Tutorial

	Pattern Matching
	Syntax

	Matching Rules

	Combining Wildcards

	Namespace Construct

	Examples

	Retrieving Nodes
	Design

	DG vs DAG Nodes

	Examples

	Extension Categories

	API Reference
	Initialization

	Extensions

Developer’s Guide

	Running the Tests
	unittest

	coverage

	Benchmarks

Additional Information

	Changelog
	v0.1.0 (2017-01-11)

	v0.0.3 (2014-12-07)

	v0.0.2 (2014-06-22)

	v0.0.1 (2014-06-21)

	Versioning

	License

Overview

The Maya’s Python API is often a good choice over the commands layer whenever
performances and robustness are valued. But because of its overall poor design,
it is not uncommon that some fundamental functionalities are lacking out
of the box and/or require too much boilerplate to get rolling.

Other gotchas to be expected include methods that became too daunting to
use after porting in the worst possible way the API from C++ to Python,
undocumented behaviours of certain features where error trialing is
everything that is left, and methods throwing an exception when returning
None would have been more appropriate.

Bana aims at reducing these shortcomings to provide a more friendly,
predictable, and efficient developing environment.

Using the monkey patching package gorilla [https://github.com/christophercrouzet/gorilla], new methods prefixed with bn
are inserted within some classes from the maya.OpenMaya* modules, thus
extending their functionalities while making these new methods feel as if they
were built-in into Maya.

Since performances are a primary reason for using the API, a set of benchmarks
built with the help of the package revl [https://github.com/christophercrouzet/revl] helps to ensure that these
extensions remain as fast as possible.

Note

Bana extends on Maya’s Python API 1.0 rather than 2.0 because the latter
version seems to be still incomplete. That being said, it is encouraged
to use the API 2.0 whenever possible since it provides a much more Pythonic
interface with increased performances.

Note

Bana does not aim at making the API more Pythonic. This could in some
cases impact the performances, which goes against Bana’s goal of keeping
things fast.

Features

	easy retrieval of nodes from the scene.

	robust and predictable specification for pattern matching with wildcards.

	abstract away the usage of the maya.OpenMaya.MScriptUtil class.

	performances as a top priority.

Usage

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> # Retrieve a transform node named 'root'.
>>> root = OpenMaya.MFnTransform.bnGet(pattern='*|root')
>>> # Recursively iterate over all the DAG nodes child of 'root'.
>>> for node in root.bnFindChildren():
... print(node)
>>> # Find all the mesh nodes in the scene containing the word 'Shape' but
... # not belonging to any namespace.
>>> for node in OpenMaya.MFnMesh.bnFind(pattern='*|*Shape*'):
... print(node)

See also

The Tutorial section for more detailed examples and explanations on
how to use Bana.

Installation

Bana requires to be run from within an Autodesk Maya [http://www.autodesk.com/products/maya]‘s Python environment.
This is usually done either by running the code from within an interactive
session of Maya, or through using the mayapy shell. A Python interpreter is
already distributed with Maya so there is no need to install one.

Additionally, Bana depends on the gorilla [https://github.com/christophercrouzet/gorilla] package.

Note

Package dependencies are automatically being taken care off when using
pip.

Installing pip

The recommended [1] approach for installing a Python package such as Bana is
to use pip [https://pip.pypa.io], a package manager for projects written in Python. If pip is
not already installed on your system, you can do so by following these steps:

	Download get-pip.py [https://raw.github.com/pypa/pip/master/contrib/get-pip.py].

	Run python get-pip.py in a shell.

Note

The installation commands described in this page might require sudo
privileges to run successfully.

System-Wide Installation

Installing globally the most recent version of Bana can be done with pip:

$ pip install bana

Or using easy_install [https://setuptools.readthedocs.io/en/latest/easy_install.html] (provided with setuptools [https://github.com/pypa/setuptools]):

$ easy_install bana

Development Version

To stay cutting edge with the latest development progresses, it is possible to
directly retrieve the source from the repository with the help of Git [https://git-scm.com]:

$ git clone https://github.com/christophercrouzet/bana.git
$ cd bana
$ pip install --editable .[dev]

Note

The [dev] part installs additional dependencies required to assist
development on Bana.

	[1]	See the Python Packaging User Guide [https://packaging.python.org/current/]

Tutorial

One cool thing with these extensions is that there isn’t much to know to
get rolling—you’ll be using the same old Maya’s Python API as you’ve always
done, only with a few extra methods at your disposal that have been injected
here and there.

All there is to make these extensions available as part of Maya’s API is to
initialize them:

>>> import bana
>>> bana.initialize()

Done! Now you can head over to the API Reference section and make use of any
of the extensions listed in there.

Note

Feel free to check out the Pattern Matching and
Retrieving Nodes sections for guides about some core features
included with Bana.

Pattern Matching

The API of Maya has a well-defined syntax to describe DG names and DAG paths
but the solution offered to match wildcard patterns, through the use of
methods such as maya.OpenMaya.MGlobal.getSelectionListByName(), can
sometimes lead to unexpected results.

As an example, Maya defines the pattern |* as matching only the DAG nodes
of depth 1, that is the nodes directly parented under the world. Therefore,
when using a similar pattern applied to the underworld, for instance
node|shape->|*, one would intuitively expect that only the nodes located
directly beneath the underworld are to be matched. Instead, Maya’s
implementation leads to match all the nodes at any depth below the underworld,
which is inconsistent.

To alleviate this lack of predictability and to add a whole new set of
possibilities loosely borrowed from Python’s re [https://docs.python.org/library/re.html] module, a new specification
dedicated to matching name and path patterns is being used across the Bana
extensions, mostly through the bnFind*() and bnGet*() methods (see
Retrieving Nodes).

This pattern matching specification introduces:

	a new syntax built upon Maya’s DG names and DAG paths
syntaxes, with support for four wildcard operators *, +, ?,
and ..

	a well-defined set of matching rules
describing the expected behaviour when using these wildcards in each
possible scenario.

Syntax

The standard syntax defined by Maya, and recognized by Bana, describes DG names
and DAG paths as they are expected to be returned by methods like
maya.OpenMaya.MFnDependencyNode.name() and
maya.OpenMaya.MFnDagNode.fullPathName():

alpha ::= "a"..."z" | "A"..."Z" | "_"
character ::= alpha | "0"..."9"
name ::= alpha character*
full_name ::= (name ":")* name
path ::= ("|" full_name)+
full_path ::= path ("->" path)* "->"?

The library Bana extends the standard syntax by adding support for the four
wildcard operators:

wcard ::= "*" | "+" | "?" | "."
wcard_name ::= (alpha | wcard+) (character | wcard+)*
wcard_full_name ::= (":" wcard+ | wcard_name) (":" wcard_name)*
wcard_path ::= ("|" wcard_full_name | wcard+)+
wcard_full_path ::= wcard_path ("->" wcard_path)* "->"?

Note

The syntax groups are listed in ascending precedence order. In other words:
character < name < full name < path < full path. This is useful
for determining the context.

In English

Names can identify DG nodes, excluding the ones carrying any
namespace or hierarchy information. They are made of character
elements, that is alphanumeric characters, underscores, and wildcards.

Full names can fully identify any DG node. They are
composed by one or more name elements, each separated by the namespace
delimiter :.

Paths can identify DAG nodes, excluding the ones carrying any
underworld information. They are composed by one or more
full name elements, each starting with the hierarchy
delimiter |.

Full paths can fully identify any DAG node. They are
composed by one or more path elements, each separated by the
underworld delimiter ->.

Patterns can be checked against any of these syntax groups using the
corresponding bana.OpenMaya.MGlobal.bnIsValid*() method:

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> OpenMaya.MGlobal.bnIsValidName('node')
True
>>> OpenMaya.MGlobal.bnIsValidName('node_*', allowWildcards=True)
True
>>> OpenMaya.MGlobal.bnIsValidName('ns:node')
False
>>> OpenMaya.MGlobal.bnIsValidFullName('ns:node')
True
>>> OpenMaya.MGlobal.bnIsValidFullName('*:node', allowWildcards=True)
True
>>> OpenMaya.MGlobal.bnIsValidFullName('|node')
False
>>> OpenMaya.MGlobal.bnIsValidPath('|node')
True
>>> OpenMaya.MGlobal.bnIsValidPath('*|node', allowWildcards=True)
True
>>> OpenMaya.MGlobal.bnIsValidPath('|root->|node')
False
>>> OpenMaya.MGlobal.bnIsValidFullPath('|root->|node')
True
>>> OpenMaya.MGlobal.bnIsValidFullPath('*->|node', allowWildcards=True)
True

TL;DR

The composition of names, full names, paths, and full paths, can
approximately be summed up as follows:

	a name is composed of one or more character elements.

	a full name is composed of one or more name
elements separated by the : symbol.

	a path is composed of one or more full name
elements separated by the | symbol.

	a full path is composed of one or more path
elements separated by the -> symbol.

Matching Rules

Depending on where a wildcard operator is located within a pattern, it might
end up matching a certain number of occurrences of either one of the
character, name, full name, or
path syntax groups. For example the wildcard in the pattern
|node_* matches a name formed by any number of characters, but the same
wildcard in the pattern *|node matches a path composed by any number of
full names (e.g.: |root|parent|node).

In order to understand what a wildcard, or a combination of wildcards, will
precisely match, there are two aspects to take into consideration:

	the context in which the wildcards are
defined.

	the number of occurrences that the
wildcards describe.

Context

The context represents the syntax group to be matched. It can be determined by
looking at the delimiters surrounding the wildcards, picking the one with the
highest precedence, and retrieving the syntax group associated with it as
defined in this table sorted in descending precedence order:

	delimiter
	syntax group

	character
	name

	:
	full name

	|
	path

	->
	full path

For example, the wildcard in the pattern |ns:*|leaf is surrounded by the
delimiters : and |, respectively representing the full name and
path syntax groups, hence the context is full name since it has a higher
precedence than path.

When the wildcards are located at the beginning or the end of a string, then
the only delimiter found is used to define the context. For example, the
context for the wildcard in the pattern *->|leaf is full path, as per the
-> delimiter.

If one of the delimiters is a character, then the context is bound to be
name. The pattern |node*->leaf is an example of such a case.

Finally, if a pattern is only composed of wildcards, then the global context
defined by the matching method called is used. For example the method
MGlobal.bnMatchFullPath()
defines the global context full path.

Number of Occurrences

Remember how, according to the rules of
syntax composition, a syntax group might be made of
one or more elements of another syntax group. With this in mind, the number of
occurences specifies how many elements of a context needs to be matched.

The special characters *, +, ?, and . all carry the same
purpose of matching a context element but a different number of times. The
quantity being described by these wildcards is the same as their regular
expression language counterparts, meaning that:

	* matches 0 or more occurrences of a context element.

	+ matches 1 or more occurrences of a context element.

	? matches 0 or 1 occurrences of a context element.

	. matches 1 occurrence of a context element.

As an example, if the context is full name, then the
quantifier defines how many name elements needs to be matched: the
wildcard in the pattern |ns:+|leaf will match 1 or more names separated
by the : delimiter, thus forming in the end a full name.

Matching Nothing

It sometimes makes sense to allow a wildcard to match zero occurrences.
This is especially useful when performing recursive searches where the pattern
*|leaf can match any node named leaf, including the one directly
parented under the world, and where the pattern |ns:*:leaf can match nodes
such as |ns:ns2:ns3:leaf and |ns:leaf.

In some other cases, this doesn’t make too much sense. For example the pattern
|ns:* cannot match any node named |ns: because this isn’t a valid
pattern.

To check if a wildcard is allowed to match zero occurrences or not, see
the TL;DR table.

TL;DR

The table below regroups all the possible valid uses of wildcard operators
located between two adjacent delimiters.

Reminder

If the occurrence of wildcard is not listed in this table, it is bound to
belong to the name context.

	pattern
	example
	context
	can match nothing

	^@$
	@
	same as the global context
	yes

	^@:
	@:leaf
	full name
	yes

	^@|
	@|leaf
	path
	yes

	^@->
	@->|leaf
	full path
	yes

	:@$
	|ns:@
	full name
	no

	:@:
	|ns:@:leaf
	full name
	yes

	:@|
	|ns:@|leaf
	full name
	no

	:@->
	|ns:@->|leaf
	full name
	no

	|@$
	|root|@
	path
	no

	|@:
	|root|@:leaf
	full name
	yes

	|@|
	|root|@|leaf
	path
	yes

	|@->
	|root|@->|leaf
	path
	no

	->@$
	|root->@
	full path
	yes

	->@|
	|root->@|leaf
	path
	yes

	->@->
	|root->@->|leaf
	full path
	yes

Note

The characters ^ and $ used in the table respectively refer to the
start and the end of a string. As for the character @, it is to be
replaced by one or more wildcards.

Combining Wildcards

If needed, it is possible to come up with some fancy patterns by successively
writing multiple wildcard operators that will combine to define a specific
number of occurrences. For example, the pattern ... matches 3 occurrences
of the context element, while .+ matches at least 2 occurrences, and
..?? matches from 2 to 4 occurrences.

The number of occurrences to match resulting from such a combination is easy to
figure out. Let’s consider the regular expression notation {m,n} describing
from m to n occurrences, and {m,} that specifies at least m
occurrences. Rewriting the four wildcard operators following this notation
gives:

	* -> {0,}

	+ -> {1,}

	? -> {0,1}

	. -> {1,1}

Combining wildcard operators is equivalent to adding their range of
occurrences. From the previous example, the pattern .+ equals to
{1,1} + {1,}, that is {2,}, and the pattern ..?? equals to
{1,1} + {1,1} + {0,1} + {0,1}, that is {2,4}.

Namespace Construct

The pattern |root|. allows matching any node which has root as direct
parent but it is not enough if filtering namespaces is also required. This
is why, as per the syntax rules, a special construct has
been added to allow a full name to start with the : delimiter if it is
followed by one or more wildcards. With this addition, the pattern |root|:.
makes it possible to match any node directly parented under root that does
not belong to any namespce.

Examples

Matching DG Nodes

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> # Match the nodes named 'leaf' belonging to any namespace.
>>> OpenMaya.MGlobal.bnMatchFullName('*:leaf', 'leaf')
True
>>> OpenMaya.MGlobal.bnMatchFullName('*:leaf', 'ns:leaf')
True
>>> OpenMaya.MGlobal.bnMatchFullName('*:leaf', 'nsa:nsb:leaf')
True
>>> # Match the nodes directly nested under a namespace 'ns'.
>>> OpenMaya.MGlobal.bnMatchFullName('ns:.', 'ns:leaf')
True
>>> OpenMaya.MGlobal.bnMatchFullName('ns:.', 'ns:nsa:leaf')
False
>>> # Match the nodes recursively nested under a namespace 'ns'.
>>> OpenMaya.MGlobal.bnMatchFullName('ns:+', 'ns:leaf')
True
>>> OpenMaya.MGlobal.bnMatchFullName('ns:+', 'ns:nsa:leaf')
True
>>> OpenMaya.MGlobal.bnMatchFullName('ns:+', 'ns:nsa:nsb:leaf')
True

Matching DAG Nodes

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> # Match the nodes directly parented under the world.
>>> OpenMaya.MGlobal.bnMatchPath('|.', '|leaf')
True
>>> OpenMaya.MGlobal.bnMatchPath('|.', '|ns:leaf')
True
>>> OpenMaya.MGlobal.bnMatchPath('|.', '|root|leaf')
False
>>> # Match the nodes directly parented under the world but not belonging to
... # any namespace.
>>> OpenMaya.MGlobal.bnMatchPath('|:.', '|leaf')
True
>>> OpenMaya.MGlobal.bnMatchPath('|:.', '|ns:leaf')
False
>>> OpenMaya.MGlobal.bnMatchPath('|:.', '|root|leaf')
False
>>> # Match the nodes containing 'Shape' anywhere in the hierarchy but not
... # belonging to any namespace.
>>> OpenMaya.MGlobal.bnMatchPath('+|*Shape*', '|cube|cubeShape')
True
>>> OpenMaya.MGlobal.bnMatchPath('+|*Shape*', '|root|sphere|sphereShape1')
True
>>> OpenMaya.MGlobal.bnMatchPath('+|*Shape*', '|cube|ns:cubeShape')
False
>>> # Match the nodes containing 'Shape' anywhere in the hierarchy.
>>> OpenMaya.MGlobal.bnMatchPath('+|*:*Shape*', '|cube|cubeShape')
True
>>> OpenMaya.MGlobal.bnMatchPath('+|*:*Shape*', '|root|sphere|sphereShape1')
True
>>> OpenMaya.MGlobal.bnMatchPath('+|*:*Shape*', '|cube|ns:cubeShape')
True

Retrieving Nodes

Out of the box, the Maya API is a bit cumbersome when it comes to retrieving
DG and DAG nodes from a scene. This usually leads each TD to write their own
code for the task, and this is also something that Bana aims to provide.

The goal here is to offer a higher-level set of methods allowing to retrieve
nodes with enough flexibility to cover most of a TD’s needs while remaining as
fast as possible.

Since these methods are in fact iterators, it is easy to build on top of them
in the case where more filtering options are required, such as for example
skipping the DAG shapes that are templated.

But what sets this library apart from the usual implementations is its
well-defined pattern matching specification. When
Maya’s interpretation of the wildcard character * is everyone’s guess, Bana
offers both precise and predictable results.

Design

In Bana, there are 2 groups of classes from where the scene nodes can be
retrieved:

	the function set classes MFnDependencyNode and
MFnDagNode.

	the lower-level classes MObject and
MDagPath.

The former group represents the most common use case while the second can be
used to slightly speed things up when the extra functionalities brought by the
MFn* classes are not required.

For each of these classes, two types of methods are then exposed as the API:

	the methods starting with bnFind which return an iterator over a
collection of nodes matching the input filters.

	the methods starting with bnGet which return a single object matching
the input filters. If zero or more nodes are found, then None is
returned.

When using the lower-level family of classes, it is possible to explictely pass
a node type to match through the fnType parameter but in the case of the
function set classes, no fnType parameter is defined. Instead the node type
to match is deduced from the calling class. In other words, a call to
maya.OpenMaya.MFnDagNode.bnFind() will match any node of type
maya.OpenMaya.kDagNode while calling
maya.OpenMaya.MFnTransform.bnFind() will only match transform nodes.

Note

Node names are available from the maya.OpenMaya.MFnDependencyNode class
but not directly from the maya.OpenMaya.MObject one. As a result,
retrieving maya.OpenMaya.MObject objects from a pattern will internally
convert them to maya.OpenMaya.MFnDependencyNode, in which case there
won’t be much benefits from using the
MObject.bnFind() method in place
of
MFnDependencyNode.bnFind().

DG vs DAG Nodes

Although it is possible to iterate over all DG or DAG nodes using the methods
exposed within the MFnDependencyNode and
MObject classes, it is not possible to filter DAG nodes this
way using a path pattern. Indeed, these methods only accept name patterns.

Hence it is recommended to use instead the methods defined in the classes
MFnDagNode and MDagPath whenever DAG
nodes are to be retrieved. Furthermore, these offer a boost in performances,
especially when only a specific branch of DAG nodes needs to be traversed
through the use of the bnFindChildren() and bnGetChild() methods.

Examples

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> # Retrieve a transform node named 'root'.
>>> root = OpenMaya.MFnTransform.bnGet(pattern='*|root')
>>> # Recursively iterate over all the DAG nodes child of 'root'.
>>> for node in root.bnFindChildren():
... print(node)
>>> # Find all the mesh nodes in the scene containing the word 'Shape' but
... # not belonging to any namespace.
>>> for node in OpenMaya.MFnMesh.bnFind(pattern='*|*Shape*'):
... print(node)

Extension Categories

Each extension provided with Bana is written to answer a specific need
belonging to one of these categories:

	explicit

	Maya’s implementation was deemed ambiguous possibly because of a lack of
well-defined specification or documentation.

	fix

	A specific method needs to be modified but creating a new method prefixed
with bn isn’t an option. Therefore, the original method is fixed in
place by being replaced. This approach is only used for magic methods
such as __str__() and __hash__().

	foundation

	The extension is considered as a fundamental functionality that is
missing from Maya’s API.

	MScriptUtil

	The original method needs to be wrapped to abstract away the used of the
maya.OpenMaya.MScriptUtil class. Some of these methods are marked as
not implemented to document a better alternative approach.

	no throw

	By default, exceptions are being thrown whenever a method returns a
maya.OpenMaya.MStatus object with a value that is not kSuccess.
This is not justified in cases where it is acceptable that the call to a
method might or might not output a valid result. For example, it is
expected for a MFn* class instance to fail accessing its
maya.OpenMaya.MObject object if the function set hasn’t been fully
initialized yet, this doesn’t have to be considered as an error. A better
suited return value here is None since it carries the information
that no valid object can be retrieved at the moment, while being even
more convenient to check validity against.

Note

The category for a specific extension can be found in the documentation
associated with that extension.

API Reference

All the extensions of Bana are described here.

	Initialization

	Extensions
	OpenMaya

Initialization

	initialize
	Initialize the extensions.

	
bana.initialize()

	Initialize the extensions.

The patches from the Bana package are searched and applied to the Maya API.
Patches that seem to have already been applied are skipped.

Extensions

All the patches to apply to the Maya API are listed here and are named after
their destination class.

OpenMaya

	MDagPath

	MFnBase

	MFnDagNode

	MFnDependencyNode

	MFnTransform

	MGlobal

	MMatrix

	MObject

	MPoint

	MQuaternion

	MTransformationMatrix

	MVector

OpenMaya.MDagPath

	bnFind
	DAG path iterator.

	bnGet
	Retrieve a single DAG path.

	__hash__
	Hash value that can be relied on.

	__str__
	Full path name.

	bnFindChildren
	DAG path iterator over the children.

	bnGetChild
	Retrieve a single DAG path child.

	bnGetParent
	Retrieve the parent DAG path.

	
classmethod MDagPath.bnFind(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid, recursive=True, traverseUnderWorld=True, copy=True)

	DAG path iterator.

Categories: foundation.

	Parameters:	
	pattern (str) – Path or full path pattern of the DAG paths to match. Wildcards are
allowed.

	fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

	recursive (bool) – True to search recursively.

	traverseUnderWorld (bool) – True to search within the underworld.

	copy (bool) – True to copy each DAG path. It is useful when data persistence
is required, such as when the DAG paths are to be stored into a
list, otherwise it is faster to set it to False.

	Yields:	maya.OpenMaya.MDagPath – The paths found.

Note

The pattern matching’s global context is set to full path if the
parameter traverseUnderWorld is True, and to path otherwise.
See Matching Rules.

See also

Pattern Matching, Retrieving Nodes

	
classmethod MDagPath.bnGet(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid, recursive=True, traverseUnderWorld=True)

	Retrieve a single DAG path.

Categories: foundation.

	Parameters:	
	pattern (str) – Path or full path pattern of the DAG path to match. Wildcards are
allowed.

	fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

	recursive (bool) – True to search recursively.

	traverseUnderWorld (bool) – True to search within the underworld.

	Returns:	The DAG path found. If none or many were found, None is
returned.

	Return type:	maya.OpenMaya.MDagPath

Note

The pattern matching’s global context is set to full path if the
parameter traverseUnderWorld is True, and to path otherwise.
See Matching Rules.

See also

Pattern Matching, Retrieving Nodes

	
MDagPath.__hash__()

	Hash value that can be relied on.

This is required because the original method returns different values
for multiple instances pointing to a same object, thus making the
MDagPath object not usable with hash-based containers such as
dictionaries and sets.

Categories: fix.

	Returns:	The hash value representing this object.

	Return type:	int

	
MDagPath.__str__()

	Full path name.

It is helpful when interacting with the commands layer by not having to
manually call the fullPathName() method each time a MDagPath
object needs to be passed to a command.

Categories: fix.

	Returns:	The full path name.

	Return type:	str

	
MDagPath.bnFindChildren(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid, recursive=True, traverseUnderWorld=True, copy=True)

	DAG path iterator over the children.

Categories: foundation.

	Parameters:	
	pattern (str) – Path or full path pattern of the DAG paths to match, relative to
the current DAG path. Wildcards are allowed.

	fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

	recursive (bool) – True to search recursively.

	traverseUnderWorld (bool) – True to search within the underworld.

	copy (bool) – True to copy each DAG path. It is useful when data persistence
is required, such as when the DAG paths are to be stored into a
list, otherwise it is faster to set it to False.

	Yields:	maya.OpenMaya.MDagPath – The paths found.

Note

The pattern matching’s global context is set to full path if the
parameter traverseUnderWorld is True, and to path otherwise.
See Matching Rules.

See also

Pattern Matching, Retrieving Nodes

	
MDagPath.bnGetChild(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid, recursive=True, traverseUnderWorld=True)

	Retrieve a single DAG path child.

Categories: foundation.

	Parameters:	
	pattern (str) – Path or full path pattern of the DAG path to match, relative to the
current DAG path. Wildcards are allowed.

	fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

	recursive (bool) – True to search recursively.

	traverseUnderWorld (bool) – True to search within the underworld.

	Returns:	The path found.

	Return type:	maya.OpenMaya.MDagPath

Note

The pattern matching’s global context is set to full path if the
parameter traverseUnderWorld is True, and to path otherwise.
See Matching Rules.

See also

Pattern Matching, Retrieving Nodes

	
MDagPath.bnGetParent()

	Retrieve the parent DAG path.

Categories: foundation.

	Returns:	The parent DAG path, or None if this DAG path is directly
parented under the world.

	Return type:	maya.OpenMaya.MDagPath or None

OpenMaya.MFnBase

	bnObject
	Retrieve the object attached to this function set.

	
MFnBase.bnObject()

	Retrieve the object attached to this function set.

Categories: no throw.

	Returns:	The object or None if no valid object is attached to this
function set.

	Return type:	maya.OpenMaya.MObject or None

OpenMaya.MFnDagNode

	bnFind
	DAG node iterator.

	bnGet
	Retrieve a single DAG node.

	__str__
	Full path name.

	bnFindChildren
	DAG node iterator over the children.

	bnGetChild
	Retrieve a single DAG node child.

	
classmethod MFnDagNode.bnFind(pattern=None, recursive=True, traverseUnderWorld=True)

	DAG node iterator.

The calling class defines the function set type for which the nodes
need to be compatible with. It also represents the type of the object
returned.

Categories: foundation.

	Parameters:	
	pattern (str) – Path or full path pattern of the DAG nodes to match. Wildcards are
allowed.

	recursive (bool) – True to search recursively.

	traverseUnderWorld (bool) – True to search within the underworld.

	Yields:	maya.OpenMaya.MDagNode – The nodes found.

Note

The pattern matching’s global context is set to full path if the
parameter traverseUnderWorld is True, and to path otherwise.
See Matching Rules.

See also

Pattern Matching, Retrieving Nodes

	
classmethod MFnDagNode.bnGet(pattern=None, recursive=True, traverseUnderWorld=True)

	Retrieve a single DAG node.

The calling class defines the function set type for which the node
needs to be compatible with. It also represents the type of the object
returned.

Categories: foundation.

	Parameters:	
	pattern (str) – Path or full path pattern of the DAG node to match. Wildcards are
allowed.

	recursive (bool) – True to search recursively.

	traverseUnderWorld (bool) – True to search within the underworld.

	Returns:	The DAG node found. If none or many were found, None is
returned.

	Return type:	maya.OpenMaya.MFnDagNode

Note

The pattern matching’s global context is set to full path if the
parameter traverseUnderWorld is True, and to path otherwise.
See Matching Rules.

See also

Pattern Matching, Retrieving Nodes

	
MFnDagNode.__str__()

	Full path name.

It is helpful when interacting with the commands layer by not having to
manually call the fullPathName() method each time a MFnDagNode
object needs to be passed to a command.

Categories: fix.

	Returns:	The full path name.

	Return type:	str

	
MFnDagNode.bnFindChildren(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid, recursive=True, traverseUnderWorld=True)

	DAG node iterator over the children.

Categories: foundation.

	Parameters:	
	pattern (str) – Path or full path pattern of the DAG nodes to match, relative to
the current node. Wildcards are allowed.

	fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

	recursive (bool) – True to search recursively.

	traverseUnderWorld (bool) – True to search within the underworld.

	Yields:	maya.OpenMaya.MDagNode – The nodes found.

Note

The pattern matching’s global context is set to full path if the
parameter traverseUnderWorld is True, and to path otherwise.
See Matching Rules.

See also

Pattern Matching, Retrieving Nodes

	
MFnDagNode.bnGetChild(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid, recursive=True, traverseUnderWorld=True)

	Retrieve a single DAG node child.

Categories: foundation.

	Parameters:	
	pattern (str) – Path or full path pattern of the DAG nodes to match, relative to
the current node. Wildcards are allowed.

	fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

	recursive (bool) – True to search recursively.

	traverseUnderWorld (bool) – True to search within the underworld.

	Returns:	The node found.

	Return type:	maya.OpenMaya.MDagNode

Note

The pattern matching’s global context is set to full path if the
parameter traverseUnderWorld is True, and to path otherwise.
See Matching Rules.

See also

Pattern Matching, Retrieving Nodes

OpenMaya.MFnDependencyNode

	bnFind
	DG node iterator.

	bnGet
	Retrieve a single DG node.

	__hash__
	Hash value that can be relied on.

	__str__
	Name.

	
classmethod MFnDependencyNode.bnFind(pattern=None)

	DG node iterator.

The calling class defines the function set type for which the nodes
need to be compatible with. It also represents the type of the objects
yielded.

Categories: foundation.

	Parameters:	pattern (str) – Full name pattern of the DG nodes to match. Wildcards are allowed.

	Yields:	cls – The DG nodes found.

See also

Pattern Matching, Retrieving Nodes

	
classmethod MFnDependencyNode.bnGet(pattern=None)

	Retrieve a single DG node.

The calling class defines the function set type for which the node
needs to be compatible with. It also represents the type of the object
returned.

Categories: foundation.

	Parameters:	pattern (str) – Full name pattern of the DG node to match. Wildcards are allowed.

	Returns:	The DG node found. If none or many were found, None is
returned.

	Return type:	cls

See also

Pattern Matching, Retrieving Nodes

	
MFnDependencyNode.__hash__()

	Hash value that can be relied on.

This is required because the original method returns different values
for multiple instances pointing to a same object, thus making the
MFnDependencyNode object not usable with hash-based containers such
as dictionaries and sets.

Categories: fix.

	Returns:	The hash value representing this object.

	Return type:	int

	
MFnDependencyNode.__str__()

	Name.

It is helpful when interacting with the commands layer by not having to
manually call the name() method each time a MFnDependencyNode
object needs to be passed to a command.

Categories: fix.

	Returns:	The name.

	Return type:	str

OpenMaya.MFnTransform

	bnGetScale
	Retrieve the scale component.

	bnSetScale
	Set the scale component.

	bnScaleBy
	Add to the scale component by scaling relatively.

	bnGetShear
	Retrieve the shear component.

	bnSetShear
	Set the shear component.

	bnShearBy
	Add to the shear component by shearing relatively.

	
MFnTransform.bnGetScale()

	Retrieve the scale component.

Categories: MScriptUtil.

	Returns:	The scale component.

	Return type:	list [x, y, z]

	
MFnTransform.bnSetScale(scale)

	Set the scale component.

Categories: MScriptUtil.

	Parameters:	scale (sequence of 3 floats) – New scale component.

	
MFnTransform.bnScaleBy(scale)

	Add to the scale component by scaling relatively.

Categories: MScriptUtil.

	Parameters:	scale (sequence of 3 floats) – Relative value to scale by.

	
MFnTransform.bnGetShear()

	Retrieve the shear component.

Categories: MScriptUtil.

	Returns:	The shear component.

	Return type:	list [x, y, z]

	
MFnTransform.bnSetShear(shear)

	Set the shear component.

Categories: MScriptUtil.

	Parameters:	shear (sequence of 3 floats) – New shear component.

	
MFnTransform.bnShearBy(shear)

	Add to the shear component by shearing relatively.

Categories: MScriptUtil.

	Parameters:	shear (sequence of 3 floats) – Relative value to shear by.

OpenMaya.MGlobal

	bnIsValidName
	Check if a name is strictly well-formed.

	bnIsValidFullName
	Check if a full name is strictly well-formed.

	bnIsValidPath
	Check if a path is strictly well-formed.

	bnIsValidFullPath
	Check if a full path is strictly well-formed.

	bnMakeMatchNameFunction
	Create a function to match names to a pattern.

	bnMakeMatchFullNameFunction
	Create a function to match full names to a pattern.

	bnMakeMatchPathFunction
	Create a function to match paths to a pattern.

	bnMakeMatchFullPathFunction
	Create a function to match full paths to a pattern.

	bnMatchName
	Check if a name matches a given pattern.

	bnMatchFullName
	Check if a full name matches a given pattern.

	bnMatchPath
	Check if a path matches a given pattern.

	bnMatchFullPath
	Check if a full path matches a given pattern.

	
classmethod MGlobal.bnIsValidName(name, allowWildcards=False)

	Check if a name is strictly well-formed.

Names can identify DG nodes, excluding the ones carrying any
namespace or hierarchy information. They are made of character
elements, that is alphanumeric characters, underscores, and wildcards.

Categories: explicit.

	Parameters:	
	path (str) – Name to check.

	allowWildcards (bool) – True to consider the wildcards as valid characters.

	Returns:	True if the name is strictly well-formed.

	Return type:	bool

See also

Pattern Matching

	
classmethod MGlobal.bnIsValidFullName(name, allowWildcards=False, matchRelative=False)

	Check if a full name is strictly well-formed.

Full names can fully identify any DG node. They are composed by one
or more name elements, each separated by the namespace delimiter
:.

Categories: explicit.

	Parameters:	
	path (str) – Full name to check.

	allowWildcards (bool) – True to consider the wildcards as valid characters.

	matchRelative (bool) – True to allow matching relatively to a parent namespace. That
is, full names starting with the namespace delimiter : are
allowed.

	Returns:	True if the full name is strictly well-formed.

	Return type:	bool

See also

Pattern Matching

	
classmethod MGlobal.bnIsValidPath(path, allowWildcards=False)

	Check if a path is strictly well-formed.

Paths can identify DAG nodes, excluding the ones carrying any
underworld information. They are composed by one or more full name
elements, each starting with the hierarchy delimiter |.

Categories: explicit.

	Parameters:	
	path (str) – Path to check.

	allowWildcards (bool) – True to consider the wildcards as valid characters.

	Returns:	True if the path is strictly well-formed.

	Return type:	bool

See also

Pattern Matching

	
classmethod MGlobal.bnIsValidFullPath(path, allowWildcards=False, matchRelative=False)

	Check if a full path is strictly well-formed.

Full paths can fully identify any DAG node. They are composed by one
or more path elements, each separated by the underworld delimiter
->.

Categories: explicit.

	Parameters:	
	path (str) – Full path to check.

	allowWildcards (bool) – True to consider the wildcards as valid characters.

	matchRelative (bool) – True to allow matching relatively to a parent path. That is,
full paths starting with the underworld delimiter -> are
allowed.

	Returns:	True if the full path is strictly well-formed.

	Return type:	bool

See also

Pattern Matching

	
classmethod MGlobal.bnMakeMatchNameFunction(pattern)

	Create a function to match names to a pattern.

Categories: explicit.

	Parameters:	pattern (str) – Name pattern to build. Wildcards are allowed.

	Returns:	A function expecting a single parameter, that is the name to
check the pattern against. The return value of this function is a
value that evaluates to True or False in a boolean
operation. The value passed to the parameter of this function must
be a strictly well-formed name. No check is done to ensure the
validity of the input but this can be done manually using
MGlobal.bnIsValidName().

	Return type:	function

	Raises:	ValueError – The pattern is not well-formed.

Examples

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> iterator = OpenMaya.MItDependencyNodes()
>>> match = OpenMaya.MGlobal.bnMakeMatchNameFunction('*Shape*')
>>> while not iterator.isDone():
... obj = iterator.thisNode()
... name = OpenMaya.MFnDependencyNode(obj).name()
... if match(name):
... print(name)
... iterator.next()

See also

Pattern Matching, MGlobal.bnIsValidName()

	
classmethod MGlobal.bnMakeMatchFullNameFunction(pattern, matchRelative=False)

	Create a function to match full names to a pattern.

Categories: explicit.

	Parameters:	
	pattern (str) – Full name pattern to build. Wildcards are allowed.

	matchRelative (bool) – True to allow matching relatively to a parent namespace. That
is, full names starting with the namespace delimiter : are
allowed.

	Returns:	A function expecting a single parameter, that is the full name to
check the pattern against. The return value of this function is a
value that evaluates to True or False in a boolean
operation. The value passed to the parameter of this function must
be a strictly well-formed full name. No check is done to ensure
the validity of the input but this can be done manually using
MGlobal.bnIsValidFullName().

	Return type:	function

	Raises:	ValueError – The pattern is not well-formed.

See also

Pattern Matching, MGlobal.bnIsValidFullName()

	
classmethod MGlobal.bnMakeMatchPathFunction(pattern)

	Create a function to match paths to a pattern.

Categories: explicit.

	Parameters:	pattern (str) – Path pattern to build. Wildcards are allowed.

	Returns:	A function expecting a single parameter, that is the path to
check the pattern against. The return value of this function is a
value that evaluates to True or False in a boolean
operation. The value passed to the parameter of this function must
be a strictly well-formed path. No check is done to ensure the
validity of the input but this can be done manually using
MGlobal.bnIsValidPath().

	Return type:	function

	Raises:	ValueError – The pattern is not well-formed.

Examples

>>> import bana
>>> bana.initialize()
>>> from maya import OpenMaya
>>> iterator = OpenMaya.MItDag()
>>> match = OpenMaya.MGlobal.bnMakeMatchPathFunction('*|*Shape*')
>>> dagPath = OpenMaya.MDagPath()
>>> while not iterator.isDone():
... iterator.getPath(dagPath)
... path = dagPath.fullPathName()
... if match(path):
... print(path)
... iterator.next()

See also

Pattern Matching, MGlobal.bnIsValidPath()

	
classmethod MGlobal.bnMakeMatchFullPathFunction(pattern, matchRelative=False)

	Create a function to match full paths to a pattern.

Categories: explicit.

	Parameters:	
	pattern (str) – Full path pattern to build. Wildcards are allowed.

	matchRelative (bool) – True to allow matching relatively to a parent path. That is,
full paths starting with the underworld delimiter -> are
allowed.

	Returns:	A function expecting a single parameter, that is the full path to
check the pattern against. The return value of this function is a
value that evaluates to True or False in a boolean
operation. The value passed to the parameter of this function must
be a strictly well-formed full path. No check is done to ensure
the validity of the input but this can be done manually using
MGlobal.bnIsValidFullPath().

	Return type:	function

	Raises:	ValueError – The pattern is not well-formed.

See also

Pattern Matching, MGlobal.bnIsValidFullPath()

	
classmethod MGlobal.bnMatchName(pattern, name)

	Check if a name matches a given pattern.

Both pattern and name must be strictly well-formed.

If the same pattern is to be matched several times, consider using
MGlobal.bnMakeMatchNameFunction() instead.

Categories: explicit.

	Parameters:	
	pattern (str) – Pattern to match to. Wildcards are allowed.

	path (str) – Name to check.

	Returns:	True if the name matches the given pattern.

	Return type:	bool

See also

Pattern Matching, MGlobal.bnIsValidName()

	
classmethod MGlobal.bnMatchFullName(pattern, name, matchRelative=False)

	Check if a full name matches a given pattern.

Both pattern and full name must be strictly well-formed.

If the same pattern is to be matched several times, consider using
MGlobal.bnMakeMatchFullNameFunction() instead.

Categories: explicit.

	Parameters:	
	pattern (str) – Pattern to match to. Wildcards are allowed.

	path (str) – Full name to check.

	matchRelative (bool) – True to allow matching relatively to a parent namespace. That
is, full names starting with the namespace delimiter : are
allowed.

	Returns:	True if the full name matches the given pattern.

	Return type:	bool

See also

Pattern Matching, MGlobal.bnIsValidFullName()

	
classmethod MGlobal.bnMatchPath(pattern, path)

	Check if a path matches a given pattern.

Both pattern and path must be strictly well-formed.

If the same pattern is to be matched several times, consider using
MGlobal.bnMakeMatchPathFunction() instead.

Categories: explicit.

	Parameters:	
	pattern (str) – Pattern to match to. Wildcards are allowed.

	path (str) – Path to check.

	Returns:	True if the path matches the given pattern.

	Return type:	bool

See also

Pattern Matching, MGlobal.bnIsValidPath()

	
classmethod MGlobal.bnMatchFullPath(pattern, path, matchRelative=False)

	Check if a full path matches a given pattern.

Both pattern and full path must be strictly well-formed.

If the same pattern is to be matched several times, consider using
MGlobal.bnMakeMatchFullPathFunction() instead.

Categories: explicit.

	Parameters:	
	pattern (str) – Pattern to match to. Wildcards are allowed.

	path (str) – Full path to check.

	matchRelative (bool) – True to allow matching relatively to a parent path. That is,
full paths starting with the underworld delimiter -> are
allowed.

	Returns:	True if the full path matches the given pattern.

	Return type:	bool

See also

Pattern Matching, MGlobal.bnIsValidFullPath()

OpenMaya.MMatrix

	__str__
	Printable-friendly version of the values.

	bnGet
	Retrieve the values as a two-dimensional 4 x 4 list.

	
MMatrix.__str__()

	Printable-friendly version of the values.

Categories: fix.

	Returns:	A printable-friendly version of the values.

	Return type:	str

	
MMatrix.bnGet()

	Retrieve the values as a two-dimensional 4 x 4 list.

Categories: MScriptUtil.

	Returns:	The two-dimensional 4 x 4 list of values.

	Return type:	list of list of floats

OpenMaya.MObject

	bnFind
	DG node iterator.

	bnGet
	Retrieve a single DG node.

	__hash__
	Hash value that can be relied on.

	
classmethod MObject.bnFind(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid)

	DG node iterator.

Categories: foundation.

	Parameters:	
	pattern (str) – Full name pattern of the DG nodes to match. Wildcards are
allowed.

	fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

	Yields:	maya.OpenMaya.MObject – The DG nodes found.

See also

Pattern Matching, Retrieving Nodes

	
classmethod MObject.bnGet(pattern=None, fnType=maya.OpenMaya.MFn.kInvalid)

	Retrieve a single DG node.

Categories: foundation.

	Parameters:	
	pattern (str) – Full name pattern of the DG node to match. Wildcards are allowed.

	fnType (maya.OpenMaya.MFn.Type) – Function set type to match.

	Returns:	The DG node found. If none or many were found, None is
returned.

	Return type:	maya.OpenMaya.MObject

See also

Pattern Matching, Retrieving Nodes

	
MObject.__hash__()

	Hash value that can be relied on.

This is required because the original method returns different values
for multiple instances pointing to a same object, thus making the
MObject object not usable with hash-based containers such as
dictionaries and sets.

Categories: fix.

	Returns:	The hash value representing this object.

	Return type:	int

OpenMaya.MPoint

	__str__
	Printable-friendly version of the values.

	bnGet
	Retrieve the values as a list.

	
MPoint.__str__()

	Printable-friendly version of the values.

Categories: fix.

	Returns:	A printable-friendly version of the values.

	Return type:	str

	
MPoint.bnGet()

	Retrieve the values as a list.

Categories: MScriptUtil.

	Returns:	The values.

	Return type:	list [x, y, z, w]

OpenMaya.MQuaternion

	__str__
	Printable-friendly version of the values.

	bnGet
	Retrieve the values as a list.

	
MQuaternion.__str__()

	Printable-friendly version of the values.

Categories: fix.

	Returns:	A printable-friendly version of the values.

	Return type:	str

	
MQuaternion.bnGet()

	Retrieve the values as a list.

Categories: MScriptUtil.

	Returns:	The values.

	Return type:	list [x, y, z, w]

OpenMaya.MTransformationMatrix

	bnAddRotation
	Not implemented.

	bnGetRotation
	Not implemented.

	bnSetRotation
	Not implemented.

	bnAddRotationQuaternion
	Not implemented.

	bnGetRotationQuaternion
	Not implemented.

	bnSetRotationQuaternion
	Not implemented.

	bnAddScale
	Add to the scale component by scaling relatively.

	bnGetScale
	Retrieve the scale component.

	bnSetScale
	Set the scale component.

	bnAddShear
	Add to the shear component by shearing relatively.

	bnGetShear
	Retrieve the shear component.

	bnSetShear
	Set the shear component.

	
MTransformationMatrix.bnAddRotation(rotation, order=maya.OpenMaya.MTransformationMatrix.kXYZ, space=maya.OpenMaya.MSpace.kTransform)

	Not implemented. See the examples for an alternative approach.

Categories: MScriptUtil.

Examples

Alternative approach:

>>> from maya import OpenMaya
>>> transform = OpenMaya.MFnTransform()
>>> transform.create()
>>> xform = transform.transformation()
>>> rotation = OpenMaya.MEulerRotation(1.0, 2.0, 3.0,
... OpenMaya.MEulerRotation.kXYZ)
>>> xform.rotateBy(rotation, OpenMaya.MSpace.kTransform)
>>> transform.set(xform)

	
MTransformationMatrix.bnGetRotation(space=maya.OpenMaya.MSpace.kTransform)

	Not implemented. See the examples for an alternative approach.

Categories: MScriptUtil.

Examples

Alternative approach:

>>> from maya import OpenMaya
>>> transform = OpenMaya.MFnTransform()
>>> transform.create()
>>> rotation = transform.transformation().eulerRotation()
>>> [rotation.x, rotation.y, rotation.z]
[0.0, 0.0, 0.0]
>>> rotation.order
0

	
MTransformationMatrix.bnSetRotation(rotation, order=maya.OpenMaya.MTransformationMatrix.kXYZ, space=maya.OpenMaya.MSpace.kTransform)

	Not implemented. See the examples for an alternative approach.

Categories: MScriptUtil.

Examples

Alternative approach:

>>> from maya import OpenMaya
>>> transform = OpenMaya.MFnTransform()
>>> transform.create()
>>> xform = transform.transformation()
>>> rotation = OpenMaya.MEulerRotation(1.0, 2.0, 3.0,
... OpenMaya.MEulerRotation.kXYZ)
>>> xform.rotateTo(rotation)
>>> transform.set(xform)

	
MTransformationMatrix.bnAddRotationQuaternion(rotation, space=maya.OpenMaya.MSpace.kTransform)

	Not implemented. See the examples for an alternative approach.

Categories: MScriptUtil.

Examples

Alternative approach:

>>> from maya import OpenMaya
>>> transform = OpenMaya.MFnTransform()
>>> transform.create()
>>> xform = transform.transformation()
>>> rotation = OpenMaya.MQuaternion(1.0, 2.0, 3.0, 4.0)
>>> xform.rotateBy(rotation, OpenMaya.MSpace.kTransform)
>>> transform.set(xform)

	
MTransformationMatrix.bnGetRotationQuaternion(space=maya.OpenMaya.MSpace.kTransform)

	Not implemented. See the examples for an alternative approach.

Categories: MScriptUtil.

Examples

Alternative approach:

>>> from maya import OpenMaya
>>> transform = OpenMaya.MFnTransform()
>>> transform.create()
>>> rotation = transform.transformation().rotation()
>>> [rotation.x, rotation.y, rotation.z, rotation.w]
[0.0, 0.0, 0.0, 1.0]

	
MTransformationMatrix.bnSetRotationQuaternion(rotation, order=maya.OpenMaya.MTransformationMatrix.kXYZ, space=maya.OpenMaya.MSpace.kTransform)

	Not implemented. See the examples for an alternative approach.

Categories: MScriptUtil.

Examples

Alternative approach:

>>> from maya import OpenMaya
>>> transform = OpenMaya.MFnTransform()
>>> transform.create()
>>> xform = transform.transformation()
>>> rotation = OpenMaya.MQuaternion(1.0, 2.0, 3.0, 4.0)
>>> xform.rotateTo(rotation)
>>> transform.set(xform)

	
MTransformationMatrix.bnAddScale(scale, space=maya.OpenMaya.MSpace.kTransform)

	Add to the scale component by scaling relatively.

Categories: MScriptUtil.

	Parameters:	
	scale (sequence of 3 floats) – Relative value to scale by.

	space (maya.OpenMaya.MSpace.Space) – Transform space in which to perform the scale.

	
MTransformationMatrix.bnGetScale(space=maya.OpenMaya.MSpace.kTransform)

	Retrieve the scale component.

Categories: MScriptUtil.

	Parameters:	space (maya.OpenMaya.MSpace.Space) – Transform space in which to get the scale.

	Returns:	The scale component.

	Return type:	list [x, y, z]

	
MTransformationMatrix.bnSetScale(scale, space=maya.OpenMaya.MSpace.kTransform)

	Set the scale component.

Categories: MScriptUtil.

	Parameters:	
	scale (sequence of 3 floats) – New scale component.

	space (maya.OpenMaya.MSpace.Space) – Transform space in which to set the scale.

	
MTransformationMatrix.bnAddShear(shear, space=maya.OpenMaya.MSpace.kTransform)

	Add to the shear component by shearing relatively.

Categories: MScriptUtil.

	Parameters:	
	shear (sequence of 3 floats) – Relative value to shear by.

	space (maya.OpenMaya.MSpace.Space) – Transform space in which to perform the shear.

	
MTransformationMatrix.bnGetShear(space=maya.OpenMaya.MSpace.kTransform)

	Retrieve the shear component.

Categories: MScriptUtil.

	Parameters:	space (maya.OpenMaya.MSpace.Space) – Transform space in which to get the shear.

	Returns:	The shear component.

	Return type:	list [x, y, z]

	
MTransformationMatrix.bnSetShear(shear, space=maya.OpenMaya.MSpace.kTransform)

	Set the shear component.

Categories: MScriptUtil.

	Parameters:	
	shear (sequence of 3 floats) – New shear component.

	space (maya.OpenMaya.MSpace.Space) – Transform space in which to set the shear.

OpenMaya.MVector

	__str__
	Printable-friendly version of the values.

	bnGet
	Retrieve the values as a list.

	bnRotateBy
	Rotate the vector.

	
MVector.__str__()

	Printable-friendly version of the values.

Categories: fix.

	Returns:	A printable-friendly version of the values.

	Return type:	str

	
MVector.bnGet()

	Retrieve the values as a list.

Categories: MScriptUtil.

	Returns:	The values.

	Return type:	list [x, y, z]

	
MVector.bnRotateBy(rotation, order=maya.OpenMaya.MTransformationMatrix.kXYZ)

	Rotate the vector.

Categories: MScriptUtil.

	Parameters:	
	rotation (sequence of 3 floats) – Values in radian to rotate by.

	order (maya.OpenMaya.MTransformationMatrix.RotationOrder) – Rotation order.

	Returns:	The new vector.

	Return type:	maya.OpenMaya.MVector

Running the Tests

After making any code change in Bana, tests need to be evaluated to ensure that
the library still behaves as expected.

Note

Some of the commands below are wrapped into make targets for
convenience, see the file Makefile.

unittest

The tests are written using Python’s built-in unittest [https://docs.python.org/library/unittest.html] module. They are
available in the tests directory and can be fired through the
tests/run.py file:

$ mayapy tests/run.py

It is possible to run specific tests by passing a space-separated list of
partial names to match:

$ mayapy tests/run.py ThisTestClass and_that_function

The unittest‘s command line interface is also supported:

$ mayapy -m unittest discover -s tests -v

Finally, each test file is a standalone and can be directly executed.

coverage

The package coverage [https://coverage.readthedocs.io] is used to help localize code snippets that could
benefit from having some more testing:

$ mayapy -m coverage run --source bana -m unittest discover -s tests
$ coverage report
$ coverage html

In no way should coverage be a race to the 100% mark since it is not
always meaningful to cover each single line of code. Furthermore, having some
code fully covered isn’t synonym to having quality tests. This is our
responsability, as developers, to write each test properly regardless of the
coverage status.

Benchmarks

A set of benchmarks are also available to keep the running performances in
check. They are to be found in the benchmarks folder and can be run in
a similar fashion to the tests through the benchmarks/run.py file:

$ mayapy benchmarks/run.py

Or for more specificity:

$ mayapy benchmarks/run.py ThisBenchClass and_that_function

Here again, each benchmark file is a standalone and can be directly
executed.

Note

The command line interface mayapy -m unittest discover is not supported
for the benchmarks.

Changelog

v0.1.0 (2017-01-11)

	Rewrote everything from scratch. Changes are not backward compatible.

v0.0.3 (2014-12-07)

	Overridden the __hash__ method for the MDagPath,
MFnDependencyNode, and MObject classes.

	Minor changes.

v0.0.2 (2014-06-22)

	Added a method bnn_asFunctionSet to the MObject and MDagPath
classes.

	Added a method bnn_getFunctionSet to the MObject class.

	Created a new internal module for data caching.

	Added the missing bnn identifiers for the test routines.

	Minor changes.

v0.0.1 (2014-06-21)

	Initial release.

Versioning

Version numbers comply with the Sementic Versioning Specification (SemVer) [http://semver.org].

In summary, version numbers are written in the form MAJOR.MINOR.PATCH
where:

	incompatible API changes increment the MAJOR version.

	functionalities added in a backwards-compatible manner increment the
MINOR version.

	backwards-compatible bug fixes increment the PATCH version.

Major version zero (0.y.z) is considered a special case denoting an initial
development phase. Anything may change at any time without the MAJOR version
being incremented.

License

The MIT License (MIT)

Copyright (c) 2014-2017 Christopher Crouzet

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bana	

 	
 	
 bana.OpenMaya.MDagPath	

 	
 	
 bana.OpenMaya.MFnBase	

 	
 	
 bana.OpenMaya.MFnDagNode	

 	
 	
 bana.OpenMaya.MFnDependencyNode	

 	
 	
 bana.OpenMaya.MFnTransform	

 	
 	
 bana.OpenMaya.MGlobal	

 	
 	
 bana.OpenMaya.MMatrix	

 	
 	
 bana.OpenMaya.MObject	

 	
 	
 bana.OpenMaya.MPoint	

 	
 	
 bana.OpenMaya.MQuaternion	

 	
 	
 bana.OpenMaya.MTransformationMatrix	

 	
 	
 bana.OpenMaya.MVector	

Index

 _
 | B
 | E
 | F
 | I
 | M
 | N

_

 	
 	__hash__() (bana.OpenMaya.MDagPath.MDagPath method)

 	(bana.OpenMaya.MFnDependencyNode.MFnDependencyNode method)

 	(bana.OpenMaya.MObject.MObject method)

 	__str__() (bana.OpenMaya.MDagPath.MDagPath method)

 	(bana.OpenMaya.MFnDagNode.MFnDagNode method)

 	(bana.OpenMaya.MFnDependencyNode.MFnDependencyNode method)

 	(bana.OpenMaya.MMatrix.MMatrix method)

 	(bana.OpenMaya.MPoint.MPoint method)

 	(bana.OpenMaya.MQuaternion.MQuaternion method)

 	(bana.OpenMaya.MVector.MVector method)

B

 	
 	bana.OpenMaya.MDagPath (module)

 	bana.OpenMaya.MFnBase (module)

 	bana.OpenMaya.MFnDagNode (module)

 	bana.OpenMaya.MFnDependencyNode (module)

 	bana.OpenMaya.MFnTransform (module)

 	bana.OpenMaya.MGlobal (module)

 	bana.OpenMaya.MMatrix (module)

 	bana.OpenMaya.MObject (module)

 	bana.OpenMaya.MPoint (module)

 	bana.OpenMaya.MQuaternion (module)

 	bana.OpenMaya.MTransformationMatrix (module)

 	bana.OpenMaya.MVector (module)

 	bnAddRotation() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix method)

 	bnAddRotationQuaternion() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix method)

 	bnAddScale() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix method)

 	bnAddShear() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix method)

 	bnFind() (bana.OpenMaya.MDagPath.MDagPath class method)

 	(bana.OpenMaya.MFnDagNode.MFnDagNode class method)

 	(bana.OpenMaya.MFnDependencyNode.MFnDependencyNode class method)

 	(bana.OpenMaya.MObject.MObject class method)

 	bnFindChildren() (bana.OpenMaya.MDagPath.MDagPath method)

 	(bana.OpenMaya.MFnDagNode.MFnDagNode method)

 	bnGet() (bana.OpenMaya.MDagPath.MDagPath class method)

 	(bana.OpenMaya.MFnDagNode.MFnDagNode class method)

 	(bana.OpenMaya.MFnDependencyNode.MFnDependencyNode class method)

 	(bana.OpenMaya.MMatrix.MMatrix method)

 	(bana.OpenMaya.MObject.MObject class method)

 	(bana.OpenMaya.MPoint.MPoint method)

 	(bana.OpenMaya.MQuaternion.MQuaternion method)

 	(bana.OpenMaya.MVector.MVector method)

 	
 	bnGetChild() (bana.OpenMaya.MDagPath.MDagPath method)

 	(bana.OpenMaya.MFnDagNode.MFnDagNode method)

 	bnGetParent() (bana.OpenMaya.MDagPath.MDagPath method)

 	bnGetRotation() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix method)

 	bnGetRotationQuaternion() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix method)

 	bnGetScale() (bana.OpenMaya.MFnTransform.MFnTransform method)

 	(bana.OpenMaya.MTransformationMatrix.MTransformationMatrix method)

 	bnGetShear() (bana.OpenMaya.MFnTransform.MFnTransform method)

 	(bana.OpenMaya.MTransformationMatrix.MTransformationMatrix method)

 	bnIsValidFullName() (bana.OpenMaya.MGlobal.MGlobal class method)

 	bnIsValidFullPath() (bana.OpenMaya.MGlobal.MGlobal class method)

 	bnIsValidName() (bana.OpenMaya.MGlobal.MGlobal class method)

 	bnIsValidPath() (bana.OpenMaya.MGlobal.MGlobal class method)

 	bnMakeMatchFullNameFunction() (bana.OpenMaya.MGlobal.MGlobal class method)

 	bnMakeMatchFullPathFunction() (bana.OpenMaya.MGlobal.MGlobal class method)

 	bnMakeMatchNameFunction() (bana.OpenMaya.MGlobal.MGlobal class method)

 	bnMakeMatchPathFunction() (bana.OpenMaya.MGlobal.MGlobal class method)

 	bnMatchFullName() (bana.OpenMaya.MGlobal.MGlobal class method)

 	bnMatchFullPath() (bana.OpenMaya.MGlobal.MGlobal class method)

 	bnMatchName() (bana.OpenMaya.MGlobal.MGlobal class method)

 	bnMatchPath() (bana.OpenMaya.MGlobal.MGlobal class method)

 	bnObject() (bana.OpenMaya.MFnBase.MFnBase method)

 	bnRotateBy() (bana.OpenMaya.MVector.MVector method)

 	bnScaleBy() (bana.OpenMaya.MFnTransform.MFnTransform method)

 	bnSetRotation() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix method)

 	bnSetRotationQuaternion() (bana.OpenMaya.MTransformationMatrix.MTransformationMatrix method)

 	bnSetScale() (bana.OpenMaya.MFnTransform.MFnTransform method)

 	(bana.OpenMaya.MTransformationMatrix.MTransformationMatrix method)

 	bnSetShear() (bana.OpenMaya.MFnTransform.MFnTransform method)

 	(bana.OpenMaya.MTransformationMatrix.MTransformationMatrix method)

 	bnShearBy() (bana.OpenMaya.MFnTransform.MFnTransform method)

E

 	
 	explicit

F

 	
 	fix

 	
 	foundation

I

 	
 	initialize() (in module bana)

M

 	
 	MScriptUtil

N

 	
 	no throw

 _static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Bana's Documentation

 		Overview

 		Features

 		Usage

 		Installation

 		Installing pip

 		System-Wide Installation

 		Development Version

 		Tutorial

 		Pattern Matching

 		Syntax

 		In English

 		TL;DR

 		Matching Rules

 		Context

 		Number of Occurrences

 		Matching Nothing

 		TL;DR

 		Combining Wildcards

 		Namespace Construct

 		Examples

 		Matching DG Nodes

 		Matching DAG Nodes

 		Retrieving Nodes

 		Design

 		DG vs DAG Nodes

 		Examples

 		Extension Categories

 		API Reference

 		Initialization

 		Extensions

 		OpenMaya

 		Running the Tests

 		unittest

 		coverage

 		Benchmarks

 		Changelog

 		v0.1.0 (2017-01-11)

 		v0.0.3 (2014-12-07)

 		v0.0.2 (2014-06-22)

 		v0.0.1 (2014-06-21)

 		Versioning

 		License

_static/comment.png

_static/minus.png

_static/up-pressed.png

